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I. Introduction

The impedance spectroscopy technique is widely used in the 
dielectric characterization of solid and liquids [1]. According 
to this technique a simple harmonic difference of potential, 

( ) ( )ω∆ =V t V texp i0 , of small amplitude V0 is applied to the 
sample of a well defined geometry, and the electric impedance 
Z of the sample is measured versus the frequency ( )ω π=f / 2  
of the applied voltage. From the spectra of the real, [ ]= RR Z , 
and imaginary, [ ]= IX Z , parts of the impedance it is possible 
to test models proposed to describe the electric response of 
the sample to external electric stimulus. The analysis per-
formed in this manner is called at the ‘impedance level’. In 

some situations is more convenient to consider the admittance 
of the sample, defined by Y  =  1/Z, and measure [ ]= RG Y , 
and [ ]= IB Y . This kind of analysis is called at the ‘immit-
tance level’. Of course for a good conducting medium, the 
impedance level is indicated, whereas for a good insulator the 
admittance level is more suitable. Very often the analysis is 
performed at the ‘dielectric level’, where the spectra of the 
real, ε′, and the imaginary, ″ε , parts of the complex dielec-
tric constant, ε, are related to the complex capacitance of the 
sample.

The models proposed to describe the response of a medium 
to an external electric field depend on the material under inves-
tigation. We are interested in the electric response of insulators 
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containing ionic impurities. As it is well known, an insulator 
is a medium through which no steady conduction current can 
flow when it is submitted to an external electric field. If the 
external voltage is simply harmonic the impedance of the 
sample is of capacitive type. However, true insulator behavior 
is never observed for the ionic impurities present in it, are 
responsible for a transient current when a dc field is applied. 
In the following we are interested in the influence of the ions 
on the electrical response of an insulator material submitted 
to a simple periodic external voltage due to a power supply. 
We assume that the frequency range of the external difference 
of potential is few MHz, in such a manner that the medium 
could be considered non-dispersive. From this assumption it 
follows that the dispersion of the sample is due only to the 
ions dissolved in the medium under investigation. The model 
describing the electric response of the sample has to take into 
account the contribution of the ions to the current, I, flowing 
in the external circuit, which is measured to determine the 
impedance of the cell by means of ( )= ∆Z V t I/ . The pres-
ence of the electric field is responsible for a redistribution of 
the ions dissolved in the medium and supposed free to move, 
whose distribution is assumed uniform in the absence of the 
external electric field. The model proposed in the past for the 
description of an insulating medium containing ions is based 
on the equations of continuity for the positive and negative 
ions, related to the conservation of ions, and to the equation of 
Poisson, connecting the ionic charge density with the actual 
electric potential. In the case in which there is just a group of 
positive an negative ions, the equations of the model are three 
partial differential equations valid in the bulk. According to 
this model, the medium is described by the dielectric constant, 
and the interaction of the ions with the medium by means of 
the diffusion coefficients only, if the validity of Einstein’s 
relation between the electric mobility and diffusion coefficient 
is considered valid. The partial differential equations valid in 
the bulk have to be solved with the proper boundary condi-
tions on the electric potential and the ionic current densities 
on the electrodes.

The model described above is known as Poisson–Nernst–
Planck model (PNP), and it was first fully expressed for 
completely blocking electrodes in 1953 [2] and recently 
reconsidered by [3–9] for its practical importance [10–17]. 
The Chang-Jaffe (CJ) boundary conditions [18] were soon 
incorporated into the PNP model, leading to the CJPNP one. 
Such extension took account of the possible presence of elec-
trode reactions involving mobile charges over the span of 
none (full blocking), partially blocking, to transparent (no 
blocking). Further work led to the ECJPNP model which 
included electrode adsorption effects [19], but here only the 
CJPNP model is used to compare with other PNP models 
incorporating ohmic boundary conditions (OBC), and other 
related BCs [20, 21]. Useful discussions on BCs and illustra-
tions of possible CJPNP responses appears in [22, 23].

Many different boundary conditions have been proposed 
to model real electrodes, for the theoretical description of an 
electrolytic cell, and for the analysis of experimental data. 
When chemical reactions occur at the electrodes, charge 
transport takes place and a conduction current appears. The 

dielectric response of a cell considerably changes with the 
type of the electrodes, especially at low frequencies where 
mobile ions contribute to the effective dielectric constant by 
formation of a surface double layer. Similar responses often 
appear for different types of BCs, and it has been formally 
demonstrated that in some cases different models are equiv-
alent. For example, when the ions have the same mobility, 
equivalence was shown between the adsorption-only ECJPNP 
Chang-Jaffe BC and the adsorption in the limit of Langmuir 
approximation [24]. In the case where the ions of only one 
sign are mobile, the CJBCs are also equivalent to the ohmic 
BCs (OBCs) as has been shown in [21, 23].

In the present paper we consider the general case of ions 
with different mobilities in an electrolytic cell with electrodes 
that have different affinities for cations and anions. Previous 
studies, cited before, investigate cases where either ions of 
both signs have the same mobility or ions of only one sign are 
mobile while ions of the opposite sign are immobile. Our aim 
is to investigate if for partially blocking electrodes described 
by three different models there is any equivalence between 
the models. The BCs we study are (i) the ohmic BCs (OBCs), 
the Chang-Jaffe BCs (CJBCs), and the diffusion type BCs 
(DBCs) [25]. Our investigation is done in the framework of 
the Poisson–Nernst–Planck model where the distribution of 
ions due to an external electric field is described by the equa-
tions of continuity for the cations and anions, and the equa-
tion of Poisson that relates the effective electric field to the 
bulk density of ionic charge [2]. Our paper is organized as 
follows: in section  II, we briefly recall the PNP model and 
its fundamental equations and give its general solution in the 
case of a cell in the form of a slab. Different kinds of BCs 
are presented in section III, and in section IV the problem of 
analytical equivalence is investigated. In section V, we study 
the problem of numerical equivalence. Finally, section VI is 
devoted to conclusions.

II. Bulk equations

We consider an electrolytic cell composed by an isotropic 
dielectric liquid between two flat electrodes in parallel posi-
tion and located at = ±z L /2. The electrolytic solution con-
tains two types of ions, p, n, with charge ±q and mobilities 
µp and µn for cations and anions respectively. The bulk conti-
nuity and Poisson equations that describe the PNP system are 
written as [22]

⎛
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 (1)

where εs is the dielectric permittivity of the solvent, and ( )N tra , 
with a  =  p, n, are the local densities of ions. Da are the diffu-
sion coefficients of the ions which are related with mobilities 
via the Einstein–Smoluchowski relations: µ =D q k T/ /a a B  [26], 
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where kB is the Boltzmann constant and T the temperature. In 
the present analysis, we assume that the dissolved impurities 
in the liquid are completely dissociated and therefore asso-
ciation-dissociation effects are not considered. The ions are 
supposed point-like and the system as one-dimensional. The 
electrodes are identical.

Henceforth, we introduce the following reduced quantities

=
−

=
−

= =U
N N

N
U

N N

N
U

qV

k T

V

V
, , and ,p

p
n

n
v

0

0

0

0 B th
 (2)
where N0 is the bulk density of ions at thermodynamical equi-
librium, Vth is the thermal voltage, and V the applied electric 
potential supposed of small enough amplitude to justify the 
linear treatment of the problem [27]. In the following we 
limit our analysis to the case where the applied voltage is 

( ) ( ) ( ) ( )ω∆ = − − =V t V L t V L t V t/2, /2, exp i0 , or in reduced 
form ( ) ( ) ( ) ( )ω∆ = − − =U t U L t U L t u t/2, /2, exp iv v v 0 , where  
ω is the circular frequency of the applied voltage.

In the linear version of the PNP model Up, Un and Uv are 
small quantities, of the first order, that can be decomposed 
as ( ) ( ) ( )ω=U z t u z t, exp ip p , ( ) ( ) ( )ω=U z t u z t, exp in n , and 

( ) ( ) ( )ω=U z t u z t, exp iv v . In this framework εs and Da are posi-
tion independent [28, 29]. By means of a standard calculation 
reported in [30, 31], one obtains the following expressions for 
the z dependencies of the charge and electrical potential pro-
file in the cell

( ) ( ) ( )ν ν= +u z C z C zsinh sinh ,p 1 1 2 2 (3)

( ) ( ) ( )ν ν= +u z k C z k C zsinh sinh ,n 1 1 1 2 2 2 (4)
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 (5)

where ( )ε=L k T N q/ 2sD B 0
2  is Debye’s screening length and 

ν k,1,2 1,2 are given in appendix A. The integrations constants, 
C1, C2 and A have to be determined by means of the boundary 
conditions imposed on the electric potential, and on the ionic 
current densities at the electrodes.

III. Boundary conditions

III.A. BCs on the potential

The BCs concerning the electric potential related to the 
external power supply are

u L t
u

/2,
2

e .v
t0 i( )± = ± ω

 (6)

These BCs on the potential are the same for all the three types 
of partially blocking electrodes we consider.

III.B. BCs on the ionic currents

Our goal is to investigate the equivalence between a few 
models proposed to describe the non-blocking character of 
real electrodes. The model of Chang-Jaffe [18], proposed 

long ago, reminds the model to describe the surface evapora-
tion in diffusion problems [32]. The ohmic model assumes 
that the electric current across the electrode is proportional 
to the surface electric field [33], whereas the diffusive model 
[25] that the current is proportional to the surface gradient of 
ionic concentrations. All models are phenomenological. This 
means that they describe the electrode non-blocking proper-
ties by means of macroscopic parameters, that depends on the 
physical properties of the solution and of the electrode in con-
tact with it. This description is an over simplification of the 
real problem. A more rigorous analysis has to be done starting 
from a microscopical point of view. However, as all phenom-
enological theories, the models discussed above to describe 
real electrodes allow a description of the electrode-phenomena 
based on a small number of parameters, and could be useful 
for practical applications. Of course, the phenomenological 
parameters introduced in the models depend on the physical 
properties of the electrode and of the solution in contact with.

In fact, the boundary conditions for the ions concentrations 
have the form of four equations, two at the electrode at z  =  −L/2 
and two at the electrode at z  =  L/2, describing the electrodes 
processes for the positive and negative ions. They are based on 
the assumption that the processes of charge transfer between 
the molecules of impurities generating the ions, or ions in the 
solution are limited by energy barriers which determine the 
activation energy, ϕ, of the corresponding electrochemical 
reactions [34]. In consequence, they determine the rates of 
generation and neutralization of the ions. For instance, the rate 
of neutralization of a negative ion occurring by the transfer of 
an electron from the ion to the electrode is equal to

= ϕ−K k e ,r r
K T/ B (7)

where kr is a constant. A similar formula can be used for the 
generation constant of positive ions occurring by the transfer 
of an electron from a neutral molecule to the electrode. 
Absolute values of the parameters ϕ and kr are not essential, 
only the resulting Kr value is important. The blocking case is 
recovered by assuming Kr  =  0. The energy barrier is changed 
by the presence of the external electric filed E(z, t) existing at 
the electrode. It is increased or decreased by

( ) ( ) ℓϕ∆ ± = | ± |L t E L t q/2, /2, , (8)

where ℓ is the thickness of the sub-electrode region, of the order 
of several molecular lengths. As a result of the above assump-
tion, the conservation of ions at the electrode takes the form

= −ϕ ϕ−∆ ∆j N K N Ke e ,p p r
K T

r
K T/

0
/B B (9)

= −ϕ ϕ∆ −∆j N K N Ke e ,m m r
K T

r
K T/

0
/B B (10)

for the positive and negative ions, respectively, at the electrode 
at z  =  L/2. In equations (9) and (10) the first term on the right-
hand sides denote the numbers of ions which are neutralized, 
and the second term the number of ions generated at the elec-
trodes in course of accepting or donating the electrons to the 
neutral molecules. They have the same form of Butler-Volmer 
equation for the current across the electrode, where ϕ∆  is pro-
portional to the over potential [26].
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In the framework of small applied potential, such that the 
drop of potential in the sub-electrode region is small with 
respect to K T q/B , where the Poisson–Nernst–Planck model 
works, from equations  (9) and (10) we get, expanding the 
exponential function to the first order in ϕ∆ K T/ B ,

( ) ℓ
⎧
⎨
⎩

⎫
⎬
⎭

= − +j K N N N
q

K T
E2p r p 0 0

B
 (11)

( ) ℓ
⎧
⎨
⎩

⎫
⎬
⎭

= − −j K N N N
q

K T
E2 .m r m 0 0

B
 (12)

Note that in equations  (11) and (12) the first term is pro-
portional to the ionic concentration variation with respect 
to the value of equilibrium, as in the model of Chang-Jaffe, 
according to which

( ) [ ( ) ]∝ −j L t N L t N/2, /2, ,a a 0 (13)

whereas the second one is proportional to the surface electric 
field, as in the ohmic model, where

( ) ( )∝j L t E L t/2, /2, .a (14)

The importance of one term with respect to the other one 
depends on the thickness of the sub-electrode region. As it 
follows from equations  (11) and (12) the phenomenological 
parameter appearing in the model of Chang-Jaffe coincides 
with Kr, and it depends by the activation energy of the cor-
responding chemical reaction of the ions on the electrode. 
Similar conclusion is valid for the phenomenological param-
eter entering the ohmic model.

In a recent past, the exchange current has been modeled 
with the first or with the second terms. In the present paper we 
discuss the non-equivalence between the Chang-Jaffe, ohmic, 
and diffusive models.

In our analysis we assume that the electrodes are iden-
tical. In this framework, in the absence of an external power 
supply, the difference of potential between the two electrodes 
is identically zero. In the absence of selective ionic adsorp-
tion, i.e. same chemical potential for the positive and nega-
tive ions with respect to the limiting electrodes, the electric 
potential is constant in the cell. In the presence of an external 
power supply, an electric field exists in the cell. Assuming 
that the electrodes are connected to the power supply in 
such a manner that ( ) ( ) ( )ω± = ±V d t V t/2, /2 exp i0 , from the 
assumption that the electrodes are identical, the potential 
across the sample is such that V(−z, t)  =  −V(z, t). Similar 
considerations hold true for the ionic densities. From this 
consideration it follows that, in our framework, all the func-
tions involved in the description, i.e. ionic bulk densities 
and electric potential, are odd functions of z. For this reason 
the number of integration constants is just three. This can 
be easily understood, without any calculation, in the fol-
lowing manner. If the electrodes are identical in all aspects 
with respect to the ions, on one electrode positive charges 
are leaving the sample, when the electrode is positive, and 
on the other the same number of positive charges is entering 
in it, since the corresponding electrode is negative. The 
same discussion holds for negative charges. Consequently 

the number of positive and negative charges remains con-
stant in the cell. This implies that, with our cartesian refer-
ence frame, the bulk densities of ions are odd functions of 
z-coordinate.

III.B.1. Ohmic electrodes. In the case the electrodes are 
ohmic, the current density of particles at the electrodes is 
proportional to the local electric field ( ) ( )γ= ± ±j q E L/ /2a a , 
where γp and γn are the surface conductivity for cations and 
anions respectively.

For what concerns the ionic current densities, in the frame-
work of the ohmic model [33], the proposed boundary condi-
tions, at = ±z L /2, are [35]

( )κ
∂

∂
+ −

∂
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=

u
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u

z
1 0,

p
p

v (15)

( )κ∂
∂
− −

∂
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=

u

z

u

z
1 0,n

n
v

 (16)

where κ γ σ= /a a a is the reduced surface conductivity and 
σ = qN D V/a a0 th is the bulk conductivity of the ions at thermo-
dynamic equilibrium.

III.B.2. Chang-Jaffe electrodes. According to the Chang-
Jaffe [18] model the particles current at the electrodes is 
proportional to the ionic bulk density variation from concen-
tration at thermodynamic equilibrium and it can be written as 

( )= −j H N Na a a 0 , where Ha are the reaction rates. The cor-
responding BCs at the electrodes are

∂

∂
+
∂
∂
+ =

u

z

u

z
h u 0,

p v
p p (17)

∂
∂
−
∂
∂
+ =

u

z

u

z
h u 0,n v

n n (18)

where =h H D/a a a are the CJ parameters.

III.B.3. Diffusion type BCs. Introducing now the diffusion 
model [25], the particles current of the ions, a, at the elec-
trodes is j L N/2a a a( ) ζ± = ∇ , where ζa are diffusion constants 
at the interface, then the ionic current densities at z L /2= ±  
give the diffusion model BCs

( )χ+
∂

∂
+
∂
∂
=

u

z

u

z
1 0,p

p v (19)

( )χ+ ∂
∂
−
∂
∂
=

u

z

u

z
1 0,n

n v
 (20)

where χ ζ= D/a a a are reduced diffusion constants.

IV. equivalence

IV.A. OBCs and CJBCs equivalence

In the following we calculate the integration constants using 
the BCs. By substituting equations (3)–(5) into equations (15) 
and (16) and in equations (17) and (18) we get for κ ≠ 1a
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and
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respectively, where β ν= L /21 1 , and β ν= L /22 2 .

The two models are equivalent if they predict the same up, 
un and uv, i.e. if the systems determining C1, C2 and A are the 
same for the two models. This implies that, comparing equa-
tions (21) and (22) with equations (23) and (24) respectively, 
the phenomenological parameters of the two models should 
be such that

κ
κ
ν β

κ
κ
ν β=

−
=
−

h h
1

coth , and
1

coth .a
a

a
a

a

a
1 1 2 2 (25)

Except for the trivial solution, equation (25) cannot be satisfied 
for ν ν≠1 2. It follows that in the general case the ohmic model 
is not equivalent to the Chang-Jaffe model. Nevertheless, the 
two models are equivalent in two particular cases:

 (i) When =D Dp n, and the two electrodes are identical, that 
implies κ κ κ= =p n  or = =h h hp n , a simple calculation 
shows that k1  =  −1, k2  =  1, C2  =  0. It follows that up, un 
and uv, are given by

( ) ( )ν=u z C zsinh ,p 1 (26)

( ) ( )ν= −u z C zsinh ,n 1 (27)

( ) ( )
ν

ν= − +u z
C

L
z Az

2
sinh ,v

D
2

1
2 1 (28)

  in agreement with [4]. In this case a relation exists 
between the phenomenological parameters of the two 
models given by equation (25) that rewrite as

κ
κ
ν β=

−
h

1
coth .1 1 (29)

  Note that to a real parameter of the OBC corresponds a 
complex parameter of the CJBC. Note that a similar result 

was found in [24], concerning the equivalence between 
the CJBC and a Langmuir type adsorption-desorption 
process at the electrodes when both types of ions have the 
same mobility.

 (ii) In the case where only the ions of a given sign are mobile, 
for instance Dn  =  0 and hence un  =  0, each model is 
described by one parameter at the electrodes. Therefore 
one finds that the relation between hp and κp is given by 
the left part of equation (25). In this case up and uv, are 
given by

( ) ( )ν=u z C zsinh ,p 1 (30)

( ) ( )
ν

ν= −
Λ

+u z
C

z Az
2

sinh ,v 2
1
2 1 (31)

  where ( )εΛ = k T N q/s B 0
2  is the length of Debye for the 

present case. In this particular case, equivalence between 
the two models has been discussed in [20, 21].

IV.A.1. Approximated equivalence. As it was shown in the 
previous paragraph, there is no analytical equivalence between 
the CJBCs and the OBCs for the general case where (i) both 
anions and cations are mobile, and (ii) they have different dif-
fusion constants. Nevertheless, one can construct an analytical 
but approximate equivalence by (i) introducing a concentra-
tion length ℓc that gives the distance from the electrode over 
which an appreciable concentration gradient is present, and 
(ii) assuming that the gradient profile is linear. Then the sur-
face current densities according to the CJBCs may be rewrit-
ten as

( ) ( ℓ )= − = ∇j H N N H N .a a a a c a0 (32)

Using the latter result in equations  (17) and (18) and com-
paring with equations (15) and (16) that describe the OBCs, 
one finds

ℓκ
κ

=
−

−h
1

a
a

a
c

1
 (33)

that in terms of Ha becomes =H h Da a a. Note that we assumed 
a linear profile of the concentration gradient that is not prob-
ably a good approximation for large concentration gradients, 
where the validity of Fick’s law itself is questionable. The 
concentration gradient length ℓc is expected to be of the order 
of Debye’s length for ions that have about the same mobility. 
For appreciable different mobilities one expects that it will 
depend on the ion type.

IV.B. OBCs and DBCs equivalence

Inspection of the equations (15) and (16) expressing the OBCs 
and of equations (19) and (20) for the DBCs shows that the 
two types of BCs are equivalent if

( )( )χ κ+ − =1 1 1,p p (34)

( )( )χ κ+ − =1 1 1,n n (35)
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or equivalently
χ

κ
κ

=
−1

,p
p

p
 (36)

1
.n

n

n
χ

κ
κ

=
− (37)

Therefore, the two models are equivalent. Note that the case 
⩽κ 1a  implies ⩽ζ 0a .
Of course all models reduce to the case of perfectly blocked 

electrodes when κ ζ= = =h 0a a a .

V. Numerical analysis

In the previous section, we analytically showed that the PNP 
model with ohmic boundary conditions (OBPNP) and with 
Chang-Jaffe boundary conditions (CJPNP) are not equiva-
lent in general. In the present section  we aim to test how 
this non-equivalence appears on the admittance/impedance 
level by comparing the models numerically. In order to carry 
out numerical comparisons between the OBPNP and CJPNP 
models, we use data sets calculated from the OBPNP model 
and we fit them with the CJPNP model. Fitting was carried 
out using the LEVMW4 impedance spectroscopy computer 
program at one or more of the four immittance levels, all using 
modulus weighting. We assume = × −D 8.2 10n

7 cm2s−1,  
= ×D D10p n, = ×N 4 100

14 cm−3, ε ε= ×6.7s 0. The 
geometrical parameters of the sample are L  =  1 μm and 
A  =  2 cm2. The temperature is fixed to T  =  290 K. In addition 

to the the model parameters fit estimates listed in table  1, 
graphs are included showing the admittance frequency 
response (in Ω−1) for some of the fits of the six rows in 
the table. These graphs were produced directly from the 
LEVMW fits. They are appropriate for situations, such as 
most of the six fits here, where the fits are so close that ordi-
nary log–log frequency response plots show no observable 
difference between data points (red) and fit lines (blue). They 
clarify such ambiguity by including both direct-fit residual 
plots and relative residual ones, with real-part results in red 
and imaginary part ones in blue. The relative residual results 
are useful here in showing any important low-frequency fit 
discrepancies.

The results of rows 1–6 of the table and figures 1–4 com-
pare CJPNP model fit results with exact OBPNP data sets 
varying from full blocking (reduced surface conductivity: 
κ = 0n ) to appreciable reactions of the mobile ions at the elec-
trodes, as in row 6. Incidentally the fully blocking results of 
row 1 are essentially the same both for the frequency range 
starting at 0.1 Hz and for the one starting at 10−5 Hz, not sur-
prising since here both the data and the model involve just 
PNP response. Note that the fit parameter estimates of col-
umns 4–8 of the table  are close to the input values used in 
calculating the OBPNP data sets.

As the results of rows 1–6 of the table show, the partially 
blocking fits of rows 2 and 3 are still good, but while only one 
reaction rate parameter could be estimated from the row 2 data 
set, the expected two rate parameter values were obtained for 
rows 3 and 4, with their uncertainties appreciably larger for 
the row 6 results than for the row 3 ones.

Finally we compare the two models by using the above 
results and equation (25) that relates the OBCs parameters with 
those of the CJBCs model. Figure 5 shows (a) Hn versus κn,  

Table 1. Comparisons of LEVMW CNLS fit results, using various fitting models and boundary conditions with modulus weighting, for 
various admittance-level exact PNP data sets with full charge dissociation.

Data model 
OBPNP κn Fit model SF PDRMS [ ]×∞C F 1010 [ ]Ω ×∞

−R 10 6

N0 
[cm−3] 
× −10 14 Πm

Dn  
[cm2 s−1] 
×107 ρp ρn

Hp [cm s−1] 
Hn [cm s−1]

0 PNP × −8.8 10 7 1.187 2.162 4.004 10.000 8.200 — —
× −3.3 10 6 — —

10−8 CJPNP × −1.4 10 6 1.186 2.165 3.997 10.000 8.200 — —
× −5.2 10 6 × −4.879 10 6 × −8.001 10 10

10−7 CJPNP × −1.3 10 6 1.186 2.165 3.997 10.000 8.200 × −1.229 10 4 × −2.015 10 8

× −1.5 10 3 × −3.650 10 5 × −5.986 10 9

10−6 CJPNP × −1.6 10 6 1.186 2.165 3.997 10.000 8.200 × −1.414 10 3 × −2.318 10 7

× −2.4 10 4 × −3.467 10 4 × −5.685 10 8

10−5 CJPNP × −2.8 10 4 1.186 2.165 3.995 9.910 8.197 × −1.402 10 2 × −2.299 10 6

0.034 × −3.479 10 3 × −5.704 10 7

10−4 CJPNP × −2.4 10 4 1.186 2.165 3.997 9.980 8.193 × −1.843 10 1 × −3.020 10 5

0.021 × −3.258 10 2 × −5.339 10 6

Note: OBPNP designates the PNP model with ohmic boundary conditions, and CJPNP denotes that model with Chang-Jaffe boundary conditions. In the first 
row and column κn is the principal dimensionless ohmic boundary condition parameter for positive charges. The corresponding one for positive charges is 
κ κ= /2p n . When these parameters are zero, there is full blocking at the electrodes of mobile charges. SR stands for a data range beginning at about 0.1 Hz, 
while for all other rows the lowest data point was calculated for a frequency value of about × −1.6 10 5 Hz. The Dn and =M L L/2 D parameter values were 
calculated from the four free parameters listed in the table but since M estimates were 465 for all conditions, they are not included in the table. In the fits, 
the free reaction-rate parameters ( )ρ κ= L D/2p p p, ( )ρ κ= L D/2n n n are dimensionless and their values are shown in column 9. They are transformed to the 

ρ=H D L2 /a a a , where a  =  p, n, parameters of the tenth column and have dimensions of cm s−1. Π = D D/m n p, ε=∞C A L/s , ( ) ( )= +∞R q KT N D D L A/ /p n
2

0 .

4 The Windows version, LEVMW, of the comprehensive LEVM fitting 
and inversion program can be downloaded at no cost by accessing http:// 
jrossmacdonald.com. It includes an extensive manual, executable and full 
source code, and many fitting models, including the HN and CJPNP ones.
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and (b) Hp versus κp. The continuous line is calculated from 
equation  (25) while the filled points are the fitting results 
given in table 1. In both cases we took ℓc equal to Debye’s 
length. This approximation seems reasonable for the fast 
anions (see figure 5(a)) but it proves poor for the slow cations 
(see figure  5(b)). Certainly one expects that ℓc, even in the 
framework of a model based on the validity of Fick’s law for 
the diffusion phenomenon, depends on the diffusion constant 
and on the surface conductivity and/or the surface reaction 
rate. Therefore ℓc is expected to depend on the type of ions 
and eventually to vary with the surface conductivity and/or 
the reaction rate. In figure 5(b), the dashed line is a fit with ℓc 
as a free parameter. The best fit is obtained for ℓ = L0.019c D. 
One can obtain fits of the same quality using as a free param-
eter either the surface conductivity or supposing a fractional 
dependence of ℓc on Debye’s length (not shown), related to an 
anomalous diffusion in the surface layer [20], or eventually 
to a surface diffusion constant that is different from the bulk 
one. It is evident from the above discussion, that one cannot 
obtain the correct values of the OBCs model parameters fit-
ting the impedance with CJBCs and therefore the models are 
definitely not equivalent in what concerns their surface param-
eters. The deviation between the two models increases with 
increasing electrode conductivity in accordance with equa-
tion  (25). This conclusion also shows that good fit quality 
does not always result to the correct values of the underlined 

physical parameters. Nonetheless, note that the fittings give 
the correct values for the bulk parameters.

Since both the OBCs and the CJBCs are plausible, but are 
not always equivalent, particularly for situations with different 
mobilities of the positive and negative charges and large reac-
tion rates, as shown in the last row of the table, it is uncertain 
which one or neither would be most appropriate for analyzing 
actual experimental data sets. It is thus important to carry out 
OBPNP and CJPNP model fitting of real data of the above 
type to resolve this issue and discover which boundary condi-
tions are the more physically appropriate for typical imped-
ance spectroscopy data.

VI. Conclusion

We have investigated the problem of equivalence between the 
ohmic, the diffusion and the Chang and Jaffe BCs in the frame-
work of the PNP model for the general case where anions and 
cations are both mobile and they may have different mobility. 
We have shown that the ohmic and diffusion type electrode 
models are formally equivalent, while the analytical equiva-
lence between the Chang and Jaffe and the ohmic types is 
restricted in two particular cases where either all ions have the 
same bulk mobility or only the ion of a given sign are mobile 
and the sample is limited by identical electrodes. The latter 
case was alredy studied in [20, 21]. When the symmetry of the 

Figure 1. Admittance-level fit results of exact completely blocking PNP data with the completely blocking PNP model. Estimated values of 
the four free fit parameters of the model are shown in row 1 of table 1. Admittance in Ω−1.

J. Phys. D: Appl. Phys. 49 (2016) 025503
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Figure 2. Admittance-level fit results of exact partly blocking PNP data with the partially blocking CJPNP model for κ = −10n
8. Estimated 

values of the five free fit parameters of the model are shown in row 2 of table 1. Admittance in Ω−1.

Figure 3. Admittance-level fit results of exact partly blocking PNP data with the partially blocking CJPNP model for κ = −10n
6. Estimated 

values of the five free fit parameters of the model are shown in row 4 of table 1. Admittance in Ω−1.

J. Phys. D: Appl. Phys. 49 (2016) 025503
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sample is broken because the mobilities of the positive and 
negative charges are different and both are non-zero, the two 
models are not equivalent from the analytical point of view. 
Nonetheless, fitting the same data-set with the two models 

may result in fittings of the same quality, for low enough elec-
trode conductivity, but the obtained fit parameters character-
izing the electrodes are different. The numerical fitting results 
of rows 2–6 of table  1 further demonstrate the increasing 

Figure 4. Admittance-level fit results of exact partly blocking PNP data with the partially blocking CJPNP model for κ = −10n
4. Estimated 

values of the six free fit parameters of the model are shown in row 6 of table 1. Admittance in Ω−1.

Figure 5. Ha versus κa, where a  =  p, n. Solid points are calculated from fitting the OBCPNP model with the CJBCPNP model, given 
at table 1. (a) Hn versus κn. Blue continuous line is calculated from equation (25) taking ℓc equal to Debye’s length. The agreement is 
reasonable for the fast anions. (b) Hp versus κp. Blue continuous line is calculated from equation (25) taking ℓc equal to Debye’s length. 
In the case of the slow cations there is a large deviation between the two models, that increases with increasing surface conductivity. Red 
dashed line has been calculated with ℓ = L0.019c D.

J. Phys. D: Appl. Phys. 49 (2016) 025503
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non-equivalence, of the two models, as the electrode reaction-
rate parameters increase in size. In all cases both models give 
the same bulk parameters.
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Appendix A

The characteristics complex lengths ν−1,2
1, ℓp n,  and constants  

k1, 2 appearing into equations (3)–(5) are defined by

⎛

⎝
⎜

⎞

⎠
⎟

ν

ω ω

=

+
+

± +
−

L

L
D D

D D
L

D D

D D

1

2

1 i 1 i .
p n

p n

n p

n p

1,2
D

D
2

D
2

2
 (A.1)

ℓ

ℓ

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

ω

ω

= +

= +

L

L

D

L

L

D

1 1

2
1 2i

1 1

2
1 2i ,

p p

n n

2
D
2

D
2

2
D
2

D
2

 (A.2)

and

ℓ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ν= − −k L2

1
,

p
1,2 D

2
1,2
2

2 (A.3)

as discussed in [30, 31]. In the static case, where ω = 0,

ν ν= =
L

1
, 0,1

D
2 (A.4)

ℓ ℓ
= =

L

1 1 1

2
,

p n
2 2

D
2 (A.5)

= − =k k1, and 1.1 2 (A.6)

We stress that in this case, as discussed below, also a linear 
contribution to up(z) and un(z), not present in equations (4) and 
(5), is possible.

In the case where = =D D Dp n , we get

ν ω ν
ω

= + =
L

L

D D

1
1 i , i ,1

D

D
2

2 (A.7)

ℓ ℓ

⎛

⎝
⎜

⎞

⎠
⎟ω= = +

L

L

D

1 1 1

2
1 2i ,

p n
2 2

D
2

D
2

 (A.8)

= − =k k1, and 1.1 2 (A.9)

Appendix B

In the static case, up, un and uv are solutions of the ordinary 
differential equations

( )+ =′ ′
z

u u
d

d
0,p v (B.1)

( )− =′ ′
z

u u
d

d
0,n v (B.2)

and

( )″ = − −u
L

u u
1

2
,v p n

D
2 (B.3)

where the prime means derivation with respect to z, f ′ =  
f zd /d . The relevant boundary conditions for the ionic current 

 densities are

κ+ =′ ′ ′u u u ,p v p v (B.4)

κ− = −′ ′ ′u u u ,n v n v (B.5)

for the ohmic model, and

+ = −′ ′u u h u ,p v p p (B.6)

− = −′ ′u u h u ,n v n n (B.7)

for the Chang-Jaffe model, at z L /2= ± , and

( )± = ±u L u/2 /2,v 0 (B.8)

for the electric potential.
The solutions we are looking for are

( )= +u C z L C zsinh / ,p 1 D 2 (B.9)

( )= − +u C z L C zsinh / ,n 1 D 2 (B.10)

( )= − +u C z L Azsinh / ,v 1 D (B.11)

that are the limit of the general formulae (3)–(5) for →ω 0. By 
substituting equations(B.9)–(B.11) into equations (B.4), (B.5) 
and (B.8) and equations (B.6) and (B.7) we get

κ
κ κ−

+
−

+ =
L

M C C A
1

1
cosh

1

1
0,

p

p pD
1 2 (B.12)

κ
κ κ−

−
−

+ =
L

M C C A
1

1
cosh

1

1
0,n

n nD
1 2 (B.13)

for the ohmic model, and

( )+ + + =h M C h d C Asinh 1 /2 0,p p1 2 (B.14)

( )− + + =h M C h d C Asinh 1 /2 0,n n1 2 (B.15)

for the Chang-Jaffe model, where ( )=M L L/ 2 D , is usually 
very large with respect to 1. The two models are equivalent if

κ
κ−

=
L

M h M
1

1
cosh sinh ,

p

p
p

D
 (B.16)
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κ−
= + h

L1

1
1

2
,

p
p (B.17)

and a similar system of equations  for κn and hn, that imply 
=M Mtanh . Since this condition is not verified for large M 

the two models are not equivalent, in the sense that it is impos-
sible to choose a value of Hp by means of which the Chang-
Jaffe boundary conditions are identical to the ohmic boundary 
conditions. From this result we infer that even in the static 
case the ohmic and Chang-Jaffe model are not equivalent. The 
equivalence exists, as discussed in [21, 23], in the case where 
only one group of ions is mobile.

Note that in the symmetric case, where κ κ κ= =p n , and 
= =h h hp n , a simple calculation shows that C2  =  0. In this 

situation equations  (B.12) and (B.13) and equations  (B.16) 
and (B.17) reduce to

κ
κ−

+ =
L

M C A
1

1
cosh 0,

D
1 (B.18)

+ =h M C Asinh 0,1 (B.19)

from which it follows that the two model are equivalent if

( )
κ
κ

=
−

h
L

M
1

coth ,
D

 (B.20)

that coincides with equation  (29) written for the case under 
consideration.
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