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Static space-charge distributions in materials having one charge
blocking and one ohmic electrode are considered with special
emphasis on the situation where charge carriers of only one sign
are mobile but which may recombine bimolecularly with fixed
charges of opposite sign. The dependence of potential, charge, and
electric field on distance from the blocking electrode cannot be
obtained exactly in closed form but various simple approximate
relations are obtained and are compared with accurate digital com-
puter solutions of the exact relation between potential and dis-
tance. Comparison is most significant when the distance scale is
normalized by the effective Debye length, a quantity which is
shown to depend on recombination ratio when charges of only one
sign are mobile. The dependence of total space-charge and dif-
ferential and static space-charge capacitance on applied potential

and recombination is obtained in closed form, and it is shown that
recombination can lead to peaks in the curves of static and dif-
ferential capacitance versus applied potential. Observation of
these peaks should afford a simple method of determining recom-
bination ratio and other pertinent parameters of the material.
Finally, the addition of a charge-free layer in series with the space-
charge region is cansidered, and the effect of such addition on dif-
ferential capacitance investigated. The combination of a charge-
free layer and space-charge region represents a combination of
Mott’s and Schottky’s theories of rectification insofar as capaci-
tance effects are concerned and is therefore pertinent to measure-
ments on barrier-layer rectifiers as well as to material with a
completely blocking electrode.

INTRODUCTION

HENEVER the motion of electric charge in a

solid or liquid under the influence of an electric
field is partly or completely impeded at an electrode, a
space-charge region forms near the electrode. Measure-
ment of the spatial dependence of potential within
the material and of the space-charge capacitance as
functions of applied external potential can yield valu-
able information concerning the nature and concentra-
tions of charge carriers within the material, and of
recombination and breakdown properties. When mobile
charge cannot leave or enter the charge-containing
material at an electrode, this electrode may be termed
blocking for such charge. Although this condition is
strictly an idealization, it is one which is often well ap-
proximated experimentally, as discussed later. An ohmic
contact or electrode may be thought of as the opposite
of a blocking electrode. Formally, an ohmic contact may
be defined as one in which the Fermi level in the electrode
material is equal to that in the charge-containing
material adjoining it before as well as after contact
between them. Practically, this means that there is
no potential drop at the junction of the two materials
in the range of applied potentials over which the con-
tact is ohmic.

The static space-charge distributions for material
contajning mobile, univalent, noncombining positive
and negative charges have been obtained for a single
completely blocking electrode' and for material between
two such electrodes.?® In the present paper, a solution
of the one-electrode case will be given when charge of
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only one sign is mobile but can recombine with fixed
charge of opposite sign. In a succeeding paper, the
similar case with two blocking electrodes will be treated.
A small-signal linearized theory of the ac response of
such a system has already been given.*

There are many experimental situations in solids
where it is more likely that charge of only a single
sign is mobile than that charges of both signs move.
Even in the latter case when the two mobilities are
widely different a quasi-static distribution will be
initially set up which will be like that occurring when
charge of only one sign is mobile.? Examples of ma-
terials for which the present treatment is likely to
apply when one or more blocking electrodes are used
are: photoconducting alkali and silver halides,>® im-
pure ice,’ plastic insulators,’® electrets,”! and glass.!?'
Finally, the treatment will apply, at least approxi-
mately, to extrinsic semiconductors. It should be
emphasized that the univalent charges considered
need not be electrons or holes but can be protons,
other ions, charged impurities, vacancies, etc.

The mobile charge with which we shall be concerned
is assumed to arise from ionization of neutral impurity
centers in the material and from injection at any
nonblocking electrode. When injection or extraction
occurs, the material as a whole will not be neutral.
Tonization may take place thermally, by the absorption

4J. R. Macdonald, Phys. Rev. 92, 4 (1953).
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1R, J. Munick, J. Appl. Phys. 27, 1114 (1956).

1 B. Gross, J. Chem. Phys. 17, 866 (1949).

2 Y, E. Stanworth, Physical Properties of Glass (Oxford Uni-

versity Press, London, 1953).
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SPACE CHARGE AND CAPACITANCE FOR BLOCKING ELECTRODE 1347

of radiation, or under the influence of high electric
fields. We shall assume for simplicity that there are no
neutral traps in the material which can capture mobile
charge and become charged but that all recombination
is bimolecular between mobile charge and ionized
impurity centers. Some time ago it was pointed out
that the present case was of interest but that it could
not be solved completely in closed form.? With the
recent availability to the author of an IBM 650
computing machine, presentation of accurate solutions
to the equations then considered has become possible
and pertinent.

SOLUTIONS FOR A SINGLE BLOCKING ELECTRODE

Let us consider unit cross section of charge-containing
material extending from a plane, blocking electrode at
x=0 to + . It will be assumed that the electrode at
infinity is essentially ohmic so that mobile charge
can enter or leave the material there without space-
charge formation. As we shall see later, the assumed
semi-infinite length in practice need amount to only a
few effective Debye lengths and the ohmic electrode
need not be entirely ohmic for the theory to still hold.

For simplicity, we shall specify that any blocking-
electrode contact or surface potential shall be included
in the applied potential ¥, making the internal po-
tential ¥ an inner potential. Thus, when ¢ is zero
throughout the material, it will be electrically neutral
throughout.t Discussions of inner and electrochemical
potential pertinent to the present case have been
given by Skinner* and Graham.!

The pertinent differential equations for charge
motion under the influence of an electric field in a solid
or liquid may be written for a one-dimensional system
with bimolecular recombination as*

on/dt=km,— kgnp~+ Dy (3*n/3%%) +u[0(nE) /0x], (1)
dp/dt=kun.— kanp+ D, (8%p/35%) — [ 3 (pE) /0x], (2)

6n5/6t= —klnc+k2np, (3)
AE/dx= (4we/e) (p—n), (4)
E=—dy/dx. (5)

In these equations, . is the concentration of neutral
impurity centers, k; and k, are dissociation and re-
combination rate constants, and the other symbols
have their conventional meanings. The condition that
both positive and negative charge be blocked at an
electrode is that of zero positive and negative currents.

ppp E—D,(dp/dx) =0
at electrode. (6)
ut E4+ D, (dn/3x) =0

Let us now specialize the foregoing equations for the

t A glossary of symbols appears at the end of this paper.
14§ M. Skinner, J. Appl. Phys. 26, 498 (1955).
15 D, C. Grahame, Chem. Revs. 41, 441 (1947).

static case and for negative charges only mobile. Note
that in the static case, the dielectric constant e in (4)
is the low-frequency limiting value of the differential
dielectric constant of the material in the absence of
free charges.'® As long as the dielectric constant is
independent of field strength, the static and differential
dielectric constants are equal; this will be assumed to
be the case in the present treatment. After an integra-
tion of (1) which can be readily carried out because the
currents in the blocking static case are zero,! we obtain,
on using the Einstein relation between D, and u,

dn/dx=— (e/kT) En. (7
Equation (3) becomes*
kanp=rk(N—p), (8)

where IV is the homogeneous concentration of neutral
centers before any dissociation is assumed to have
occurred. The concentration of neutral centers in a
region where the concentration of fixed positive centers
is p(x) must be simply (N—p) as in (8) since the
positive charge concentration p is assumed to arise
entirely by dissociation from neutral centers.

Before solution of the above equations, it will be
helpful to normalize the quantities of interest. Define
the Debye length for a concentration IV of charges of
one sign mobile as Ly, =[ekT/4we?N . This is the
minimum Debye length and arises when all neutral
centers are ionized. When there is incomplete ionization
and nonzero recombination, the effective Debye length,
L., will be greater, since the concentration of mobile
charge is then decreased. Let L,=0Lp,, where the
correction factor 8 will be determined later. Let

y*=y/(kT/e); n*=n/N; p*=p/N;
E*= E/(kT/eLe) 5 REkzN/kl,
g=x/Lp,; and  x¥=zx/L,.

The quantity z is a measure of distance in terms of the
number of fixed minimum Debye lengths, while x*
measures the number of effective Debye lengths, the
quantity of greater interest. Note that the recombina-
tion ratio R depends only on material properties.
When R is zero, there is no recombination.

Written in terms of normalized variables, the per-
tinent equations become

dn*/dx*=— E*-n*, (7)
dE*/dx*=6(p*—n*); )
E*= —dy*/dx*, (5)
p*=[1+Rn*J. (8)

Equations (6) are automatically satisfied since there
is no current at the blocking electrode or elsewhere.
The above set of equations can be partly solved by

16 §, R. Macdonald, J. Chem. Phys. 22, 1857 (1954).
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substituting (8) in (4'), differentiating (7/) with
respect to x*, and eliminating E* and dE*/dx* from
the resulting equation using (4’) and (7). The result-
ing second-order nonlinear differential equation in
n* can be transformed to a linear Bernoulli equation,
then integrated directly. The result is

[(1/n*) (dn*/dx*) = A+26*n*

+262 In{ (14 Rn*) /n*}. (9)
On using (7'), this equation may be written
(E*)*=A+26{n*+In[ (14 Rn*) /n*]}, (9)

where A is an integration constant. By combining
Egs. (7') and (5'), one can obtain

(1/n*) (dn*/dx*) = — E¥=dy*/dx*, (10)

Let us fix the zero of potential at x*= o and define
n*,, as the value of #* there. Integration of (10) then

yields
(11)

At x*= o, n* and p* are equal and E* is zero. Equation
(8') therefore leads to the relation

n*e=—(1/2R)+[(1/2R)*+(1/R) },

a reasonably well-known equation.*” Thus, n*_ is the
common, normalized value of the mobile and fixed
charge concentrations in the absence of space charge;
it is unity for R=0 and equal to R~* for very large R.

Using the boundary condition at x*= o, the inte-
gration constant 4 in (9') may be evaluated. On
introducing (11) as well, one finds

n¥=pn* e¥*,

(12)

E*(@%) = — (dy*/da*) = VI8[n*, (e —1)
+In{(e¥*+ Rn*,)/(1+Rn*,)}], (13)

where the sign of E* is selected such that it is directed
from positive to negative charges. Equation (13) may
also be written as follows, using #* = (14+Rn*,),

E*(y*) = £V20[n* (e*—1) +In{1+n* (e¥*—1)} |
(13)

At x=0, y=1yu, the externally applied potential plus
any contact or surface potential at the boundary. Thus,
the normalized field at the blocking electrode is ob-
tained by replacing ¥* by ¢* in (13’). Note that y*,
may be either positive or negative. The formal solution
to the present problem is given by rewriting (13) or
(13’) as an integral,

_FLe i
=20) o [n* (@ — 1)+l +n* (e 1)}
(14)

x*

7 N. L. Pisarenko, Izvest. Akad. Nauk S.S.S.R. Ser. Fiz. 3,
631 (1938).
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which specifies how ¥* and x* are connected for given
values of y*, and »n*_. The 7 sign is chosen so that x*
is positive whatever the sign of ¥p* and ¢*.

Although (14) cannot be integrated exactly in closed
form, it may be evaluated to any desired accuracy by
digital computer quadrature. Further, it can be inte-
grated in certain limiting cases to yield approximate
but explicit relations between y* and x* When
n*, (e ¥*—1)K1, (14) becomes

y*o
x*=1/\/7./ {dy*/[coshy*—1}
w*

=In{tanh(¢*,/4) /tanh (¥*/4) }, (15)

the known solution of the one-blocking-electrode
problem when changes of both sign are mobile and
recombination is zero.! In that case x* is normalized
with L,= Lp,= Lp,/V2, however. In the present case,
when R is large the fixed charges are effectively mobi-
lized and the effective Debye length L,=60Lp,, becomes
[ekT/8me*n, I equal to Lp, except that N is replaced
by #n,. Thus, this approximate solution then differs
from the corresponding two-mobile case only in the
difference between #,, and N. In particular, the de-
pendence of ¥* on x* will be exactly the same for
VE>1.

Another case of interest is that where ¢* is large and
negative so that n*.e'¥*a'>>1. Equation (14) then
becomes

ol
= —yv [~ —nF Flnn* ]

= (V2/0) {[| ¥* | —n*s+Inn* T
=Ll y* |=n*,4Inn* J}.  (16)

This result applies of course only when ¢*<—1 and
| ¢* | > (n*,—Inn*,). It is useful, however, in delineat-
ing most of the exhaustion and depletion region that
forms in the neighborhood of the blocking electrode
when ¢% is large and negative and the mobile charges
are negative as well, as in the present case. Had we
taken the mobile charges positive instead of negative,
the present case would have arisen on the application
of a large positive potential.

Next, consider the case exp(y*)>>1. Then (14)
becomes approximately

oo LY Y
=)y [ expyt T
=[2/6(2n*)} JLexp(—¥*/2) —exp(—¢*/2) 1. (17)
On solving for ¢* in terms of x* one finds
Y22 In{exp(—y¢*o/2) 4 (n* 6%/2) - a*} L

This expression shows how ¢* depends on x* in the
immediate neighborhood of the blocking electrode
when y*; is of the proper sign and of sufficient magni-

(17)
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SPACE CHARGE AND CAPACITANCE FOR BLOCKING ELECTRODE 1349

tude to produce an appreciable charge accumulation
region near the electrode. For large R, (n* 82/2)}
approaches 3. Formula (17) is then of exactly the form
obtained in the analogous two-mobile case, except
again N in the Lp, for the two-mobile case is here
replaced by 7.

The R=0 case for |¢* |« requires special treat-
ment. Equation (14) becomes, noting that #* =1 and
6=1,

"y 1 ¥v*o d‘p* ~ lﬁ*Odll/*
TSN Tep M) —1—p* Py
=In(g* /™). (18)
Thus,
Y Yo (exp— ). (18")

Note that an equation similar to (18') is also obtained
from (15) when (¥%/4) 1.

Equations (15), (16), (17), and (18), although
approximate, should usually suffice to allow most of
the space-charge regions of interest to be calculated
with sufficient accuracy for comparison with experi-
ment. Experimental measurement of potential dis-
tributions can be made for distances as small as 21073
cm by moving a sharp probe along the surface of the
material® and using a vibrating reed electrometer, but
certain precautions must be observed. It is desirable
that any contact, surface, or floating potential between
the probe and the surface be eliminated or reduced by
making the contact nonrectifying.!® The probe will
then measure the average lattice potential at its posi-
tion. A possible method of making effectively ohmic
contacts to insulating crystals such as CdS has been
described by Smith.® In practice, various probe ma-
terials and surface treatments may often be used to
reduce floating potentials to a level considerably below
that of the desired space-charge potential. It should be
pointed out that since ¥, and ¥ have been defined to
include the contributions of any surface or contact
potentials at the blocking electrode, measurements
with a potential probe and electrometer will only yield
that part of the internal potential difference arising
from the applied potential, not including blocking-
electrode contact potentials. We have elected to
include such potentials in ¢, however, when they
exist, since they can still lead to space charge in the
neighborhood of the electrode and their presence can
. be inferred from capacitance measurements, as dis-
cussed later.

DISCUSSION OF STATIC DISTRIBUTION CURVES

Figures 1 through 6 illustrate space-charge behavior
for various conditions. The curves of these figures have

18 Pearson, Read, and Shockley, Phys. Rev. 85, 1055L (1952).

1 H. K. Henisch, Rectifying Semi-Conductor Coniacts (Oxford
University Press, London, 1957), pp. 274-275.

20 R. W. Smith, Phys. Rev. 97, 1525 (1955).
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Fic. 1. Accumulation-region potential curves for various values
of applied normalized potential versus normalized distance. The
six lower curves are for R=0.

been calculated from Eq. (14) using an IBM 650 com-
puter.?t Although we only show the dependence of ¥* on
normalized distance, that of »* p* and E* can be
obtained using the ¢* results and Egs. (11), (12),
(8"), and (13'), together with the expression for 6
given in the next section.

Figure 1 illustrates the development of a charge
accumulation region as the applied normalized po-
tential is increased from very small values. In this
figure, all but the top two curves are for R=0. Note
that the curve for ¥*=0.1 iswell fitted by Eq. (18")
but that the other curves progressively deviate from
exponential behavior in the small z region as ¢%
increases.

The two top curves.show how the space-charge
region is spread out for nonzero recombination. Since
the abscissa is here 2z, the normalization of distance is
constant independent of R. Were the top two curves
replotted versus x* so that comparison could be made
on the basis of an equal number of effective Debye
lengths (depending on R through 8), both top curves
would fall between the curves marked 4 and B in the
figure. For R=10%, the resulting curve is indistinguish-
able from B, that for the case where both positive and
negative charges are mobile. The condition for applica-
bility of Eq. (13) is well satisfied in this case. Since

2 Copies of this program for IBM 650 computer use are avail-
able to any who may require more accurate solutions than those
given by the approximate results of Egs. (15), (16), (17), and (18).
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F16.2. Log-log plot of accumulation region normalized potential
in the neighborhood of the blocking electrode versus normalized
distance. The dotted line at the right is calculated from an ap-
proximate expression.

curves for all R values fall in the narrow region be-
tween 4 and B, we see that on comparing in terms of
effective Debye lengths, R has very little effect on the
space-charge distribution in the accumulation case.

When %, is greater than about 10 (equivalent to
approximately 0.25 volt at room temperature), the
accumulation layer builds up only in the region of very
small z and the rest of the curve remains the same as
that for ¢*=10. This effect is illustrated by the
log-log curves of Fig. 2. For x*>0.2, the y*=20
and ¥* =10 curves are indistinguishable. The dotted
curve at the right of the figure illustrates how the
approximation (17’) deviates from the correct result
for x*>0.4. Note that the x* and 2 scales are identical
in the R=0 case.

We have not illustrated accumulation layers for
¥¥%>20 for two reasons. First, for small R, they
lead to exceptionally high fields and charge concen-
trations at x=0.2 Experimentally, high-field emission,
dielectric saturation, etc., will occur before such fields
and concentrations are reached. For R=0, y*=20
leads to a normalized field E*=3.12X10* at x*=0.
At room temperature, this corresponds to an actual
field of 8 X108 volts/cm for an effective Debye length of
10~* cm. It may also be pointed out that high fields
may have an effect on recombination and emission?
and that the concept of electron motion in a conduction
band is itself not useful if the field is very high.?
Finally, it should be mentioned that for high y*, the
mathematics may call for not only exceptionally high
charge concentrations at the electrode but extremely
rapid decrease in the concentration as z increases from
zero. It is clear that the physical situation will not
conform to the mathematical solution if the mean free
path of the mobile charges is greater than the distance
in which ¢* and #* are required to change appreciably.
In this case, the terms which describe diffusion in the
equations will certainly be inapplicable.

2 F. G. Bass, Zhur. Eksptl. i Teoret. Fiz. 32, 863 (1957).
2 E. N. Adams, Phys. Rev. 107, 698 (1957).
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When R is very great, the situation is somewhat
different. The large value of R produces a small value
of n*_, and the field and charge concentration at the
blocking electrode will not necessarily be excessive.
In terms of x*, the decay of * away from the electrode
will still be very rapid but L. may be so large that
the decay will actually take place over appreciable
distances. As an example, consider the case R=10%,
¥*=>50. Then n*_ =102, If N=10% cm~3, for example,
the material is essentially insulating. The quantity 6
is 10%/v2 and even for an Ly, of 107 cm, L, is 7X10?
cm. For this same Lp,, the field at the electrode is
2.6X10% volts/cm. The normalized potential drops
from 50 to 20 in 6.4X1072 cm and to 10 in 32 cm. At
the latter point, #»* is 2.2X107%. Because of the very
few free carriers present in material with such a high
recombination ratio, it will be difficult to measure the
dependence of potential on distance from the blocking
electrode even though the distance scale is favorable.

Figure 3 illustrates the progressive formation of a
depletion and exhaustion region at the blocking
electrode when fields are present which draw the
mobile charge away from the electrode. The dotted
line on the y*,= —10 curve is calculated from Eq. (16) ;
for | ¢* |>2, this equation fits the curves of the figure
extremely well. The mathematical solution calls for
extremely small but nonzero »* values when y*&—1.
For example at ¢*=—100 and R=0, n*~4X107%.
This value is completely negligible and can be replaced

10*

IIIIIIII_I lllI d 1 1l
[ 100 z 10! 10?

T L

F1c. 3. Exhaustion-depletion region potential-distance curves
for various values of applied normalized potential. The dotted
line represents an approximate expression.
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SPACE CHARGE AND CAPACITANCE FOR BLOCKING ELECTRODE 1351

by zero with no effect on the potential distribution.
Because »* is so small in the exhaustion region, re-
combination has little effect on the curves in this
region using the z scale. Thus, for ¥*=—1000, z=
37.10 at ¢*= —30 for R=0 and is 39.52 at ¢*=—230
for R=10%,

The present treatment is based on the assumption of
a continuous space charge. For it to apply, it is neces-
sary that the exhaustion region thickness be large
compared to the average distance between ionized
centers, N~ cm. From (16) the approximate exhaustion
layer thickness ( | ¢* 3> —Inn*,+n*, |) is

Lo, (2 ¢% Di=[e |0 |/27eN ]}

Thus, the exhaustion layer solution is only a good
approximation when this quantity is at least five or
ten times greater than N Taking the factor as 10,
we obtain the condition for validity, | ¢, |>200reN?/e.

The strong exhaustion regions illustrated in Fig. 3
are very similar to those found with reversed-biased pn
junctions, as discussed in the next sections. Mathe-
matically, the mobile charge concentration in the
exhaustion region follows the Maxwell-Boltzmann
distribution of Eq. (11) and reaches extremely small
values. Physically, it will actually be zero over most of
the region. In the region of very low concentration,
the diffusion terms in the equations will not be ap-
plicable and the field will withdraw all mobile charge

30

0.020 [ 2 3 4 5 6 7

Fic. 4. Potential-distance curves showing the initial forma-
tion of a depletion-exhaustion region for low applied normalized
potentials.
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T T T TTTT]

T
o]

Loyl 1 1t
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F1c. 5. Exhaustion region potential-distance curves for yo*=
—10 and various values of the recombination ratio, R. Distance
scale normalization independent of R.

from most of the exhaustion region. Consider a charge
near the boundary of the exhaustion region where the
charge concentration is appreciable. In the statistically
unlikely event that almost all the available thermal
energy of the material should be transferred to this one
charge at a certain instant (and the rest of the material
thereby cooled to almost absolute zero), the charge
might start off toward the blocking electrode against
the influence of the internal field. Like a ball thrown
upward, it would penetrate only so far into the ex-
haustion region and would then return. Thus, for
appreciable potential drop across the depletion-ex-
haustion region, it must be at least partly depleted
entirely of mobile charge.

Figure 4 illustrates the initial setting up of a depletion
region starting from very small ¥*. These curves
should be compared with the corresponding ones of
Fig. 1 for the buildup of accumulation regions. Equa-
tion (18') is again applicable for very small ¥*. Figure
5 shows the effect of recombination for ¥*;=—10, not
so negative a value that »* is negligible in the depletion
region. Using the z scale, R appears to make a very
appreciable difference in the curves. Comparing on the
basis of number of effective Debye lengths, as in Fig. 6,
however, we see that the difference is not very great.
The latter is the more reasonable mode of comparison.
It will be noted that as R increases, the potential dis-
tribution gradually changes from that of an exhaustion
region to that of an accumulation region in the neigh-
borhood of the blocking electrode. The final R>108
curve is exactly the same as that for the two-mobile
case in Fig. 1 and is described by Eq. (13). As recom-
bination increases, the fixed positive charges become
essentially mobile through recombination and an
excess of them (but <N) buildup near the blocking
electrode while a deficit of negative charge is formed
there. For R>108%, the concentrations of positive and
negative charge are almost exactly reversed in the
neighborhood of the electrode for yY*==410. Such
reversal can only occur exactly when the maximum
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Fic. 6. Exhaustion region potential-distance curves for yo*=
—10 and various values of R. Distance scale measures number of
effective Debye lengths and normalization is therefore a function
of R

value of #»* does not exceed unity since p* can never
exceed this value. For very negative applied potentials
such as y*=—>50, it requires values of R such as 10%
to cause this condition to be met. In general, for n*,..=
n*, exp(¥*) <1 tohold, it is necessary that exp(¥*y) <
R}, for large R. For a depletion layer to turn to an
accumulation layer, the same condition with the abso-
lute value of |¢*)| taken applies. Since y*,=—1000
corresponds to only about — 25 volts at room tempera-
ture, the maximum value of R found experimentally
will usually not be great enough for the above condition
to hold for most applied potentials.

Various conditions under which the mathematical
solution does not correspond to a physically realizable
situation have already been noted. It should addi-
tionally be pointed out that since the present solution
is one-dimensional, edge and surface effects are neg-
lected. There will be situations where surface recom-
bination and surface states will exert appreciable
influence on static space-charge distributions but they
are outside the scope of the present one-dimensional
treatment.

The present treatment is also implicitly limited to
Maxwell-Boltzmann statistics. In samples where elec-
trons or holes are the mobile carriers, the present solu-
tion will not be accurately applicable when mobile
charge concentrations reach degeneracy, and Fermi-
Dirac statistics must be used. Two cases may be men-
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tioned. When #, is in the degenerate region, the
Einstein-Boltzmann relation between u and D will not
hold but must be replaced, e.g., in (7), and in the
expression for Lp, by a relation involving integrals
over the Fermi-Dirac distribution function. This
greatly complicates solution of the equations. Sec-
ondly, in an accumulation region, » may be large
enough for degeneracy even though #, is not. In this
case, the electric field will generally be large enough
in this region (provided breakdown or saturation has
not occurred) that band theory will not be applicable?
and the values of #(x) will depart from the predictions
of the present solution.

In some experimental situations, the blocking elec-
trode may not be completely blocking but may allow a
small leakage current to flow on the application of a
potential difference to the material. Additionally, in
semiconductors intrinsic generation of mobile holes
and electrons will contribute charges not considered
in the present theory. These sources of additional
charge will usually not alter the charge distribution
appreciably in the regions where the normal space-
charge concentration is high. They may determine
the minimum charge concentrations in exhaustion
regions, but are not likely to alter the potential dis-
tributions appreciably. As long as the additional charge
is small, the fields of the present treatment may be
considered as acting on the additional charge without
themselves being much changed by it.

In the present treatment, the impurity concentration
N has been assumed homogeneous. Were there any
experimental reason to expect it to vary appreciably
with position, such variation could be readily incorpo-
rated into the space-charge equations and a digital
computer solution produced with little more difficulty
than in the present case.

Finally, the present solution has been applied to a
sample of semi-infinite length. As the foregoing curves
show, the actual length necessary for the internal po-
tential have decayed in magnitude by a factor of ten
or more from its value at the blocking electrode is no
more than three effective Debye lengths for an ac-
cumulation region and approximately [from Eq. (16)]
(2| ¢* )t Lp, lengths for an exhaustion region. If
an ohmic contact is placed along the specimen a dis-
tance equal or greater to those above instead of at
x=o, the actual space-charge distribution in the
portion of the sample between the blocking and ohmic
contacts will be little altered. The potential distribu-
tion need not be altered at all for even shorter lengths
provided the added electrode is not exactly ohmic. All
that is necessary is to add an electrode at whatever the
desired distance that will ensure duplication of the
infinite-length-solution field, potential, and charge
concentrations at the point of addition. Such an
electrode will not be ohmic since it will have a potential
drop across it equal to the potential difference from the
point of addition to x*=o in the infinite-length
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solution. The more usual case where both electrodes
are completely blocking will be discussed in a succeed-
ing paper.

CHARGE AND CAPACITANCE

When an exhaustion or accumulation region forms,
the total charge in the system is less or greater than
that before an external potential is applied because of
transient mobile charge flow through the ohmic elec-
trode. The changes in the positive and negative charges
may be written

di=e] [p(e)—pldr=eN L[ [p(en) = prdas,
(19)

gn= e/:o[n (x) —n, Jda= eNLe/:c[n* (x*) —n*, Jdx*;
(20)

these are really charges per unit cross-sectional area,
but for convenience we shall omit further mention of
this fact in speaking of charges and capacitance in the
rest of this section. The negative charge on the blocking
electrode is from Gauss’s law, just

Q=g gp= (—¢/4m) Ey= (kT /e) (¢/4m L) [— E*],
(21)

where FE; is the electric field immediately at the block-
ing electrode. Noting that eNVL,= (ekT6*/4meL.) and
using (3), (19) and (20) become

VRO p% (%) — p* \du*

= (kT/e) (¢/4m Lp,) [exp(—¢*0/2) —1]

(two-mobile case); (19")
¥*0 * ®Y 4k d *
gu= (RT/c) (e6*/4x L) /0 L ﬂ‘b E)* ( Ji)“’lj v
= (kT/e) (¢/4m Lp,) [exp($*/2) —1]
(two-mobile case). (20')

For the present one-mobile case, (19') and (20%)
may be written more explicitly by substitution of
Egs. (8), (11), (12), and (13’). They may then be
integrated using a digital computer or other method.
When these equations are combined as in (21) to give
¢, it may readily be shown that ¢ may be expressed
as in the right-hand side of (21) without the need for
integration. The & sign in £* is selected to that ¢ is
positive for Y*; positive and negative when it is nega-
tive. Here ¢ is the arithmetic charge and ¢ is an un-
signed charge magnitude; if e includes the sign of the
charge, go will be negative, representing an excess of
negative charge when ¢* is positive. Note that
E*(y*)=E*, can be obtained from (13") with ¢*
set equal to ¥*. Since ¢ is a quantity which is readily
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F1c. 7. Normalized differential capacitance versus positive and
negative applied normalized potential for various R values.

measurable, it is convenient that it can be obtained
without integration.

The static and differential capacitances may now be
written

Co=1 g/ |= (¢/4mL.)| E* /Y% |, (22)
Cd= l qu/dlpo |= (6/47I'Le> I dE*g/dtﬁ*g ‘
= (e6/4wLe)| (n*o—p*) /E% |, (23)

where no and po are the values of # and p at x=0 and
P*=y¢%, and the relation 1—#* = Rn*_? has been
used in simplifying (23). For the two-mobile case,
C, and C; have already been given as explicit functions
of y*, elsewhere.?

We are now in a position to determine the quantity 6.
Let Co=¢/4r L., the common value of C, and C; as
¥*—0. If now we carry out the limit ¢*,—0 in either
(22) or (23), Co/Co and Ca/Co should approach unity.
Since these equations involve 6, it is therefore deter-
mined. The result is

0=[n*, (14 Rn*2) Ti=[n*o(2—n*,) I
The effective Debye length may now be written as

L.=0Lp,=[ekT/4ne*Nn*,(2—n*,) .

(24)

(25)

When R is large and recombination important, #*,,<&2.
Since Nn*, =n,, L. will then approach the two-mobile
Debye length, Lp, with N replaced by ., as stated
earlier. In this case, the positive carriers are effectively
mobilized by recombination.

Figure 7 shows how the normalized differential
capacitance depends on potential for various recombina-
tion ratio values. Note that the potential increases
negatively to the left. For positive ¢*, the accumula-
tion layer has a capacitance which increases as
exp(y*/2) for large y*. For R>10% the resulting
curve is that also obtained in the two-mobile case.?
Note that Cy will decrease as R increases. For R=0
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and ¥* <0, an exhaustion region is formed and the
capacitance eventually decreases proportional to y*;*
as in an abrupt p# junction.

When ¢*,<0 and R>0, the situation is somewhat
different. The C,/Cy curve for appreciable R is initially
a mirror image of that obtained for ¥*>0 but even-
tually reaches a maximum then decreases, reaching a
final slope equal to that of the R=0 case. What is
happening is that the negative potential draws mobile
charge away from the neighborhood of the electrode.
This reduction of #* leads to a corresponding increase
in p* (initially much less than unity for 1) through
recombination-dissociation. This increase continues
and an accumulation region is formed until almost all
mobile charge is removed from the electrode region at
x*=0. Then p* is nearly equal to unity, its maximum
value. Further increase in negative potential soon
causes a depletion-exhaustion region to form and the
capacitance begins to decrease. For R>10% the maxi-
mum value of Cy/Cy, which occurs at {(—¢*)~1+InR},
is given quite closely by R/10%

From either a detailed comparison of experimental
and theoretical Cy/C, curves of the present form or
from the maximum value of C4/Co alone, it should be
possible to calculate R quite accurately. Then #*,, and
6 can be calculated. Next, from knowledge of € and 8
and the measured value of Cy, L, and N may be ob-
tained. Finally, ., and k./k; may be calculated. Knowl-
edge of L, is necessary in comparing theoretical and
experimental potential distribution curves. Further, the
present measurement methods are readily applicable to
studies of the dependence of #,, and %,/%: on tempera-
ture or light intensity for thermal or optical activation,
respectively.

The static capacitance curves, C,/C,, are similar to
those shown in Fig. 7, but for %<0 and R>1 the
peaks are not as high as those of Cy/Cy and occur at
somewhat more negative potentials, It should be
mentioned that the measurement of C; should be made
at a sufficiently low frequency that a period of the
measuring frequency is long compared to the recom-
bination-dissociation time. Since this time will gen-
erally be very short, audio-frequency measurements
will usually be adequate. Clearly, if measurements
can be extended to sufficiently high frequencies that this
condition will not hold, useful information concerning
recombination time can be obtained.

BLOCKING LAYER EFFECTS

The preceding capacitance results implicitly assume
that an electrode can be attached to the material under
investigation which will be blocking and yet will have
no potential drop between it and the material except
possibly a contact or surface potential ¢ which is
usually taken independent of any external applied
potential. This situation will often be difficult to

# W. Shockley, Bell System Tech. J. 28, 435 (1949).
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achieve; instead there may be an additional potential
drop between the metallic electrode and the space-
charge region we have heretofore been considering.
To achieve an electrode which is blocking for either
entry or withdrawal of the mobile carriers or both, it
will often be necessary to have next to the electrode a
region of either basic material or of extraneous ma-
terial which has a very low concentration of fixed and
mobile charges. In the first case, the intermediate region
is called a natural blocking layer; in the second, an
artificial blocking layer. For example, to achieve
complete blocking of mobile electrons, a layer could be
used of an insulator such as mica taken sufficiently
thick that tunneling or dielectric breakdown would not
occur. When the mobile carriers are ions or vacancies,
a separate blocking layer will usually not be required
to achieve adequate blocking at the electrode over an
appreciable range of applied potentials.

When an additional layer of the above form is
present, part of the applied potential, now denoted
Y., will distribute itself across this layer, while the
remaining part, yo, will appear across the space-charge
region. In accordance with the above assumptions, the
blocking layer will have a potential-independent
capacitance C.... Those cases where the capacitance of
this layer may be potential dependent because of
electrostriction or dielectric saturation'® are outside the
scope of the present treatment. We shall also neglect
the very rapid decrease towards zero of mobile charge
in the charge-free layer at its boundary with the
space-charge region and assume that the charge-free
region is actually entirely charge free. The capacitance
C,er and that of the space-charge layer, C, or C,, are in
series, and since the space-charge capacitance is po-
tential dependent, the actual potential division between
C... and C, will depend on y,. Let Cy/Cier= 28, a quantity
independent of ¥,.. The conditions of field and potential
continuity at the interface between the main homog-
enous material and the blocking layer require that the
charge on the capacitor C, be equal to the distributed
space charge, e.g., g. The series blocking-layer capacitor
is formed by the metal electrode, the (essentially)
insulating blocking layer, and the space-charge region
acting as the other electrode. The condition of charge
equality yields

Cser (1//41_\00) == Cs‘pﬂ; (26)

or

Y =¥ o= (Co/ Coer) (Cs/ Co)*o=5-¢%y- (Cs/Co). (26')

Since C,/Cy is itself a function of ¢¥*;, Eq. (26') is a
transcendental equation for ¢* when ¢*, is given.
Alternatively, a value of ¢*; can be assumed and the
corresponding value of ¢*, calculated directly from
(26") using (22) for C..

The quantities actually accessible to measurement
are the series combinations of C,. and C, or Cy. The
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differential capacitance of the series combination of
Cer and Cq4, C., which is generally the quantity of
most interest, is given by

Co=Coual 8(Ca/Co) J/[1+8(Ca/Co) ]
= Coo (148) (Ca/Co) 1/[14+8(Ca/Cv) ],

where C., the zero-potential value of C., is Ce:6/ (1+38).
Note that when 6C.;/Co>1, that is, C2>Chr, C. is
essentially just Cer as it should be. A procedure for
determining the dependence of C. on §, R, and y*, is
as follows. First, the relation between a ¥*, value and
the corresponding ¥*, value is determined from (26').
Then (27) is used to calculate C.. Since this procedure
is fairly complex, it has been programed for IBM 650
calculation.®

Before discussing the results of such calculations, it is
of interest to compare the present treatment with
previous approaches. First, the Mott barrier®¥ as-
sumes a charge-free region between the electrode and
the body of the material. As in the present case, the
field is taken as constant in this region and the po-
tential distribution is linear. However, no space charge
is assumed abutting the blocking layer, and the ca-
pacitance of the system is a constant essentially inde-
pendent of applied potential. In Schottky’s theory
of barrier-layer rectifiers,®? a space-charge region
produced by fixed, completely ionized charges is taken
into account but no charge-free layer is considered
and recombination between fixed and mobile charges is
neglected. In addition, the space charge arising from
mobile carriers, an important feature of the present
treatment, is assumed to be of negligible importance
in the Schottky theory. Finally, Billig and Landsberg®
have combined the assumptions of the Mott and
Schottky theories in such a way that it is possible
to pass continuously from one to the other. In the
resulting combined theory, the capacitances of the
insulating layer and the space-charge layer combine
reciprocally in the usual fashion of capacitances in
series, but the neglect of the effects of mobile carriers
allows a transcendental equation such as (32) to be
avoided.and the over-all capacitance to be expressed
as an explicit function of the total applied potential.
Because of this approximation, the distribution of
potential drop across the charge-free and the space-
charge regions will differ between the present case
and that of Billig and Landsberg. Note that in most of
these treatments, including the present work, the
effects of tunneling and image forces have been as-
sumed negligible.

(27)

25 Copies of this program are also available.

26 N. F. Mott, Proc. Roy. Soc. (London) Al171, 27, 144 (1939).

2 See reference 19, pp. 191-192.

28 W. Schottky and E. Spenke, Wiss. Verdffentl Siemens-Werken
18, 225 (1939).

22 W, Schottky, Z. Physik 118, 539 (1942).

3 F. Billig and P. T. Landsberg, Proc. Phys. Soc. (London)
A63, 101 (1950).
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Fic. 8. Normalized space-charge differential capacitance Cq
and normalized differential capacitance C, of series combination
of Cs and the capacitance Cer of a charge-free region versus
positive applied normalized potential (accumulation region forma-
tion) for various values of 8.

Figure 8 shows the dependence of C./C,. and C4/Cy
on total applied positive potential for R=0 and various
8 values between 1073 and 10. Although Cy/C, will only
be directly measurable for =0, it is presented for
other § values as well to show how the potential divi-
sion of ¥*, into Y*; across the space-charge region and
(y*.—y*) across C,. retards its increase and the
corresponding growth of an accumulation region.
For large 8, most of the available potential appears
across Ceer and Cy/Cy is slow in increasing. Further, as it
increases with increasing y*,, its share of ¥*, becomes
proportionately less. The two dash-dot curves are
plotted for the two-mobile case and §=0.1. They also
apply to the present one-mobile case when R is large.
To avoid cluttering up the graph, such curves have
only been shown for 6=0.1; however, the difference
between the one- and two-mobile curves is still small
for other & values. It should be noted that especially
when 81 the C./C.. curves show a considerable
region very little different from the C;/Co curves. As
Y*, increases, C, must approach C,., however, since
the space-charge capacitance will eventually become
so large its effect in the series combination will be
negligible.

Figure 9 applies to the same situation as Fig. 8 but
with ¥*, negative, Here (C./Cx) % is plotted (solid and
dash-dot lines) since this quantity may be expected to
depend linearly on y*, for sufficiently negative values of
¥*, to produce an exhaustion region. The dashed lines in
the figure are extrapolations of the final linear region.
The two dash-dot curves apply to an abrupt p» junc-
tion.2 For =0, (C./Cw)~2 becomes (Ca/Co) 2 which is,
for such a pn junction, simply [1+|¢*s/¢* |]. Here
¢* i1s the normalized built-in or junction potential
arising from the different doping on the two sides of the
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junction. It may be obtained experimentally from the
intersection of the final straight line (dashed curve)
and the line (C./Cx)~2=1. No value of ¢* has been
explicitly assumed in calculating the (C./Cx) 2 curves
for the one-mobile, blocking-electrode case, but it is
evident that the theory leads to an effective value of
¢*, dependent on .

In calculating the p» junction curve for =0, a
value of ¢*; of 0.5005 has been used since this turns out
to be the effective value of ¢*; for the one-mobile curve
for the same 6 and thus makes the final limiting portions
of the curves identical. If unity is subtracted from the
(Ca/Cy) ™2 expression for the pn junction, the result is
just the dashed extrapolated straight line. For each &
value, this line has been continued down to (C./Cx) 2=
0.1 in order to show in a detailed way the deviation
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F16. 9. Dependence of (C./C.o)~? on negative applied normalized
potential (exhaustion region formation) for R=0 and various

values of the capacitance ratio 6. Dash-dot lines are for abrupt pn
junctions, solid lines for the case of charge of only one sign mobile.

between the behavior of a p# junction and the one-
mobile solution. The dotted lines shown for =0 and 10
are obtained by subtracting unity from the one-mobile
(C./Cw)~? results. Since they do not approximate very
closely to pn junction behavior in the region of the
bend of the curves, the dotted and dashed lines differ
from each other.

The effective value of ¢*; for the one-mobile case is
60.4 for 6=10. The pn-junction curve for §=10 has
been calculated two ways. First, it was calculated using
the above value of ¢* and taking (C./Cy) %=
(Ca4/Co) 2. Since 6=10 here, a more pertinent method of
calculating it is to use Eq. (32') together with ¢*=
0.5005. First, Ca4/Cy is calculated, then (C./Cy)~2 In
order to carry out this procedure, C,/C, for the abrupt
pn junction is necessary. The required expression is®

Cs/Co=2(] ¢™o/¥* L (1+] d*o/ |)?
—(¢*o/¥* D] (28)

Both methods of calculating the p#-junction curve for
=10 gave the same results,

ROSS MACDONALD

107 T T VT T L TTTTY
10° -
o e
&1 ]
10— -
[} R=Q -~
F 7
[Fo—8-=0
04 ] 1 lJ||||| 1 Il ||||11| ] U I I |
ol | 10 0

3

Fic. 10. Effective built-in normalized potential ¢* arising from
charge-free region as a function of é.

Figure 10 shows how the effective ¢* arising in the
one-mobile, blocking-electrode case varies with 8. The
final limiting form of the curve is ¢*y=682/2. Physically,
this effective built-in potential arises in the following
way. When 6 is large, Cur<KCo, and most of ¢*, appears
across C., until %, is sufficiently negative to cause C,
to decrease enough that Cs and C,. are comparable in
magnitude. Thereafter, as C, decreases, a larger and
larger part of y*, appears across C, as it becomes
smaller and smaller. It is thus evident that the be-
havior for positive and negative ¢*, is quite different.
Comparison of theory and measurements for either
polarity should allow 8, ¢*;, Cy, and C... to be obtained,
but greatest accuracy will be obtained when measure-
ments with both polarities can be made and are well
described by the present theory. Note that an in-
homogeneous distribution of NV can also change the
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Fic. 11. (C./Cs..) versus positive and negative applied nor-
malized_potential for R=10% and various & values,
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shape of C. and Cg curves, but it cannot lead to a peak
in these curves as can recombination effects.

We have not yet considered in any detail curves
with both § and R greater than zero; in this case it
may be difficult to sort out all the pertinent quantities
accurately. In particular, it will be noted from Fig. 7
that with =0 a value of R somewhat less than 100
could lead to an apparent ¢*; of about 3 which might
be confused with the R=0, §=1.5 case which leads to
the same ¢* but with a somewhat different curve
shape. It is probable that a number of experimental
determinations of ¢* from differential capacitance
measurements might have more properly been in-
terpreted in terms of nonzero § or R rather than a real
¢*o. Stratton® cites measurements of Parnell on SiC—
SiC contacts where C; or C, remained constant up to 4
volts for either polarity. Such constancy at room
temperature would require a value of an effective
¢* of between 10? and 10°. From Fig. 10, 6 would
therefore lie between about 13 and 40. For such a large
value of 9, bias of polarity to form an accumulation
layer would lead to no appreciable change in C4/Cy, as
shown by Fig. 8. Opposite bias up to about ¢*i/3
would also have little effect as one can see from Fig. 9.
Of course, these results in the constant capacity region
could also be explained by a Mott barrier as Stratton
suggests. Such a barrier would not show a final drop
off of C. with large negative bias, however.

Finally, Fig. 11 shows the behavior of C./C... for
R=108, various & values, and for both positive and
negative applied potential. These curves should be
compared with those of Fig. 7 for 6=0. For 6<1, the
shape of the present curves is very similar to that for
R=10% in Fig. 7. As & increases, the negative peak
broadens, flattens, and is displaced to more negative
potentials. Thus, different § values can lead to any
peak height from the maximum value obtained with
6=0 to a complete washing out of a peak for & of the
order of 10 or more. The curves of Fig. 11 have been
normalized with respect to Ce., rather than Cy in order
to show both the decrease in C, as R is increased and
the approach of all curves to C... as ¢*, increases
positively. Normalization with respect to C, can be
accomplished by translating all curves vertically to
the same value at small ¢*,; the curves will then be
somewhat more directly comparable with those of
Fig. 7. Although the author is unaware of capacitance
measurements in solids which show such strong peaks
as those evident in Figs. 7 and 11, somewhat similar
results have been found in electrolytes!® and conditions
suitable for their observation in solids could readily
be set up, for example in insulating photoconductors,
and should yield wvaluable information concerning
recombination, the presence of charge-free layers,
mobile and fixed charge concentration, etc.

3L R. Stratton, Proc. Phys. Soc. (London) B69, 513 (1956).
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GLOSSARY OF SYMBOLS

!
a

Differential space-charge capacitance per unit

area.

Static space-charge capacitance per unit area.

Common value of C; and C; in the limit of zero

potential. Co=¢/4n L.

Constant series capacitance per unit area.

Series combination of Ce., and Ca.

Value of C, in the limit of zero potential.

Diffusion constant of negative charge carriers.

Diffusion constant of positive charge carriers.

Arithmetic value of the electronic charge.

Electric field strength. E*=E/(kT/eL.).

Electric field strength at blocking electrode or at

juncture of space-charge region and charge-
free region.

k Boltzmann’s constant.

ky Dissociation constant. Probability per unit time
for dissociation of neutral centers.

ko Recombination constant.

Debye length for mobile charges of concentra-

tion N. Lp,=[ekT/4we’N .

Debye length for charges of both signs mobile

and concentration N. Lp,= Ly, /V2.

L, Effective value of Debye length when charges
of one sign are mobile and may recombine
with fixed charges of opposite sign. L,=6Lp,.

7 Concentration of negative carriers, assumed
mobile. n*=n/N.

P, Concentration of positive and negative carriers

in regions of no space charge.

Hoan

a

o
=]

=

SEERESISIe ol

=3

e Concentration of neutral centers. n,=N—p.

N Concentration of neutral centers (assumed
donors) before any dissociation.

P Concentration of positive carriers, assumed
immobile. p*=p/N.

Gn Change in negative charge in the material
produced by electric field.

g» Change in positive charge in the material pro-
duced by electric field.

go Negative charge on the Dblocking electrode.
0= n— p.

R Dimensionless recombination ratio. R=kN/E,.

T Absolute temperature.

x Distance into charge-containing material meas-
ured from blocking electrode at x=0. x*=
%/ L.

2 Normalized distance from blocking electrode in

Lp, units. s=x/Lp,.
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b Ratio of Cy to Coer.

€ Low-frequency limiting value of the differential
dielectric constant in the absence of free
charges.

6 Correction factor depending on R. 6=
[n*o(2—n%,) I

n Microscopic mobility of negative charge car-
riers.

Uy Microscopic mobility of positive charge carriers.
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¢ Junction or built-in potential of a p» junction.
¢*o=¢/(kT/e).
¥ Average inner lattice potential in space-charge

region. =0 at x= o, y*=y/(kT/e).
Yo Value of ¢ at blocking electrode or at junction of
space-charge region and charge-free region.
*o=vo/ (kT/e).
Ve Sum of ¥, and potential drop across charge-free
region when present. y*,=y./(kT/e).
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The nitrogen oxide equilibrium is recalculated on the basis of the new spectroscopic value for the disso-
ciation energy of nitrogen. Complete tables of the composition are given in the temperature range 2-5000°K.
The maximum amount of fixed nitrogen (at 1 atmos pressure and a nitrogen oxygen ratio as in natural air)
is ~5 mole percent and occurs at a temperature of ~3500°K. The influence of the N/O ratio is indicated.

INTRODUCTION
HE amount of fixed nitrogen obtainable by oxida-
tion at high temperatures has been assessed many
times both experimentally and theoretically, but the
results differ rather widely. In the days of the Birke-
land-Eyde process the maximum appeared to be well
below 5 mole percent of fixed nitrogen, but considerably

higher outputs have been reported.!

A preliminary calculation of A. Larsen ef al? led to a
theoretical optimum near 7%, but the data were not by
that time complete enough to reach a definitive con-
clusion. The main obstacle to an accurate determination
was the well-known uncertainty in the dissociation
energy of the nitrogen molecule. Since the latter
problem now is resolved, a complete thermodynamical
calculation on the basis of spectroscopical data is
possible, the result of which is here presented.

1. SELECTION OF THE SPECTROSCOPIC DATA
1.1 O,

The ground state of O, is 2 and there are no other

low lying electronic terms. Therefore the statistical

weight is 3. The symmetry number is evidently 2. The
vibration energy is given in the form,?

EvibrzhC{we(nJr%) +xe(n+%)2+ e }
=const-+n-hcw+n?- - -

1W. J. Cotton, J. Electrochem. Soc. 34a, 489 (1947).

2 Larsen, Torgersen, Wang, and Wergeland, Kgl. Norske Viden-
skab. Selskabs Forh. 27, 156 (1954).

3 G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand
gzompany Inc., Princeton, New Jersey, 1951), second edition, p.

(n=0, l)y
(1)

with

(2)

In the sum over states we take only into account the
terms linear in w, and have therefore to choose »=
w.(1—2,) /c. For O, also the moment of inertia and the
dissociation energy D = 2¢,om — €notecule are known
with great accuracy.

In all we have from Herzberg’s tables:

wo0,=1568.29 cm™!
Do,=5.115 ev.

W= We— X

0'02=2

go,=3
10,=19.13-107* g cm?

1.2 N,

The ground state of the N, molecules is 12, hence
g=1.Likewise the band constants w,, ., and the moment
of inertia have been accurately known for along time.
But as mentioned before, the dissociation energy has
been the subject of much debate. Still in 1951 Douglas
and Herzberg* could not make a choice between the
values 9.756 and 7.373 ev, and distinguished spectro-
scopists® were even advocating the low value 5.0 ev.
From measurements of the temperature of the cyanogen
oxygen flame Thomas, Gaydon, and Brewer® concluded
that the highest value 9.76 ev was the correct one,
and this is also in agreement with experiments done in
1957 by Brook and Kaplan? and by Hendrie® as well as

4 A. E. Douglas and G. Herzberg, Can. J. Phys. 29, 294 (1951).

. 95 41;) F. Schmidt and L. Gerd, Proc. Phys. Soc. (London) 60, 533
( 6 Th.omas, Gaydon, and Brewer, J. Chem. Phys. 20, 369 (1952).

7 M. Brook and J. Kaplan, Phys. Rev. 96, 1540 (1954).
8 J. M. Hendrie, J. Chem. Phys. 22, 1503 (1954).
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