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so much. It seems that this time we have to abandon the details of kinematics 
of densities resulting in the continuity equations, as it is obviously impossible to 
trace the currents inside the charged particles. 

In spite of the lack of a continuity equation, the integral charge conservation 
law is guaranteed simply by the gauge invariance of the first kind. On the other 
hand, the gauge invariance of the second kind is by no means a necessary condition 
for the vanishing of the rest mass of the photon. The value zero for the photon 
rest mass may be secured by other devices, e.g. by a realistic compensation by 
means of charged bosons or by a formal mass renormalization which, in the frame 
of a convergent formalism, becomes a mathematically correct procedure. In this 
respect the new formalism does not constitute any drawback in comparison with 
the traditional quantum electrodynamics which was gauge invariant only formally, 
so that we were also obliged to renormalize the (infinite!) self mass of the photon. 
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ABSTRACT. A classical treatment of the domain energy terms of a homogeneous 
ferromagnetic solid leads to a formula for the internal field contributions from these terms. 
With this result, mo&fications in the resonance condition of ferromagnetic resonance 
arising from self energy, exchange energy, magnetocrystalline anisotropy, and applied or 
intrinsic stress are obtained and are applied to various crystalline anisotropy and stress 
conditions of interest In ferromagnetic resonance experiments. Finally, the bearing of 
the results on the anomalous g-values obtained in resonance experiments is considered. 

9: 1. INTRODUCTION 
H I S  paper is chiefly concerned with the forces which influence the direction 
of the magnetization vector I of a ferromagnetic substance in an external 
magnetic field and with the effects of these forces upon some of the 

phenomena of ferromagnetic resonance. A macroscopic viewpoint is adopted 
*Now at Armour Research Foundation, Chicago, Illmols, U.S.A. 
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throughout, and all microscopic interactions are replaced by formulae for the 
magnetic potential energy density of the material which involve the macroscopic 
magnetization vector. 

The usual case considered in calculating theoretical magnetization curves 
is that of an ellipsoidal ferromagnetic specimen in a static magnetic field (Stoner 
and Wohlfarth 1948) ; in this case the magnetization is uniform throughout the 
specimen and is time-independent. In  ferromagnetic resonance experiments, 
however, a very small high-frequency oscillating magnetic field is applied to the 
ellipsoidal specimen, as well as a large static field oriented at right angles to the 
oscillating field. The magnetization of the body may then be neither space nor 
time independent, although, because of the relative magnitudes of the static 
and oscillating applied fields, variation of the magnetization vector with time and 
position will be small. One of the principal problems of ferromagnetic resonance, 
however, is the determination of this small space-and-time dependence of the 
direction and magnitude of the magnetization vector. In the purely static case 
the direction of the magnetization vector is determined from the general condition 
that the total magnetic potential energy of the body be a minimum. Because 
the magnetization is here uniform throughout the specimen, minimization of 
the expression for the magnetic energy density with respect to angle variables 
allows the direction of the magnetization vector to be uniquely specified, 

In the present work the assumption will be made that the same general 
condition of minimum total magnetic potential energy can be applied to the 
oscillating field case when the magnetization of the body is homogeneous to 
yield the direction of the magnetization vector to a good order of approximation. 
When this minimization procedure is valid, the direction of the magnetization 
vector which is found is its instantaneous equilibrium direction I,, defined as 
the direction in which the magnetization vector would remain or reach quickly 
if the time variation of the oscillating field were suddenly halted at the instant 
under consideration (and if retarded fields were of negligible importance). 

If the oscillating field is of very high frequency, the actual instantaneous 
direction of the magnetization vector I may not coincide with the instantaneous 
equilibrium direction. The  actual instantaneous direction and magnitude of the 
magnetization at a given point may be found, however, from the solution of the 
differential equation of motion satisfied by the magnetization vector ; this 
equation involves the instantaneous internal, or local, field H' at the point in the 
body considered. The instantaneous equilibrium magnetization vector is, by 
definition, parallel to the instantaneous internal field, since minimum magnetic 
energy of the specimen results when the magnetization vector lies along the 
internal field at every point in the body. 

In $2 the variational principle is applied to  the total magnetic potential energy 
of a homogeneous non-conducting ellipsoidal ferromagnetic body to yield a 
general method for calculating the internal-field vector when an external magnetic 
field is applied, and it is shown how the instantaneous direction of the magneti- 
zation vector may be determined. The contributions to the internal iagnetic 
field from the various magnetic potential energy terms present in a ferromagnetic 
specimen are evaluated in $ 3 .  In 014-6 the influence on the ferromagnetic 
resonance condition of the various energy terms is discussed in detail for macro- 
scopic single crystals and for polycrystalline aggregates. Finally, in $ 7  the 
bearing of the results of the paper upon the anomalous Land6 g-factors found 
in resonance experiments is considered. 
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$ 2 .  CALCULATION O F  T H E  I N T E R N A L  F I E L D  

Before deriving a general expression for the internal field H' in terms of the 
magnetic potential energy density, it is desirable to define further quantities and 
to consider the dependence of these quantities upon space and time. Since 
the externally applied field H is the sum of a static component H,, and a high. 
frequency oscillating component h, the internal field H' will be a Corresponding 
sum of and h', where h/Ho and h'/H,,' are very much smaller than unity. 
H,, and h will be independent of position within the body providing it is a non- 
conducting ellipsoid ; if the ellipsoid is electrically conducting, h will decay 
with penetration depth because of the skin effect. Similarly, the magnetization 
vector I will be a sum of a static component I, and an oscillating part i. Because 
of the smallness of the oscillating field h compared with the static field, the 
oscillating component of the resulting magnetization will likewise be far smaller 
than the static component even a t  resonance, when the oscillating component is 
a maximum. 

Finally, it is easy to show that the magnitude of the total magnetization 
vector is very nearly independent of time. The vector differential equation of 
motion of I, a t  a given point in the body, is 

where y =ge/2mc =gpB/Tz is the magnetomechanical ratio, g the Land6 splitting 
factor, and pB the Bohr magneton. Note that the g-factor is assumed, subject 
to experimental verification, to be a constant independent of field orientation, 
body shape, etc. Equation (1) is just an expression for the rate of change of 
angular momentum per unit volume of the system. It shows that I.aIjat=O, 
at all points in the magnetic body, and that therefore I is time-independent. 
However, a small additional term should be added to equation (1) in order to 
account for damping caused by interactions between spins in the magnetic 
material and between the spin system and the crystalline lattice (Kittel 1948, 
Bloembergen 1950). Such damping may destroy the time-independence of I ,  
but since damping is usually found experimentally to be small, I still remains 
nearly time-independent ; therefore the effect of damping will be neglected in 
the present treatment. It will now be shown how an expression for the internal 
field may be derived by extending a method used by Landau and Lifshitz (1935). 

There are several contributions to the total magnetic potential energy 
density which may influence the direction of the magnetization vector in a 
ferromagnetic body. The following will be considered here: (a) the magnetic 
potential energy density of the body in the external magnetic field, (b )  the potential 
energy density arising from the magnetic self-energy of the body associated with 
its shape, (c) the Heisenberg exchange, or Weiss, energy density, ( d )  the magneto- 
crystalline anisotropy energy density, which is thought mainly to arise from 
spin-orbit coupling between neighbouring atoms, and ( e )  the strain magnetic 
energy density connected with magnetostriction and dependent upon the state 
of strain of the body. 

I t  should be noted that domain wall energy need not be explicitly considered 
in the present treatment because the static external magnetic field will always 
be taken sufficiently large for the specimen to be considered a single domain- 
The domain wall energies and thicknesses for zero applied fields have recently 
been considered by Lilley (1950) and by Kittel (1919b). 
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The magnetic potential energy density of a uniformly magnetized magnetic 
body (non-conducting ellipsoid) may usefully be considered as a function of the 
following variables * : E = E(1, X,, aI/aXJ, where X, represents the three rectan- 
gular coordinates. Hence the total potential energy of the body will be 

Applying the condition that the total magnetic potential energy of the body 
must be stationary with respect to small variations of the magnetization vector I, 
one obtains 

Now the magnitude of I has been assumed to be a constant independent of 
time. Therefore the variation 61 is not completely arbitrary but must lie in the 
plane perpendicular to Iea. This is because the variation consists of small 
changes in the direction of I from the instantaneous equilibrium direction Ieq. 
Since the variation is otherwise arbitrary in magnitude and direction, however, 
the integrand of the above integral must itself be zero. 

where B is the differential vector operator 

One thus obtains 
( B E )  ' (SIeq) = 0, . . . . . . (2) 

( a  i - a + q  ax, a(aIjax,) a I} * 

Equation (2) can only be satisfied if the vector %E is parallel or antiparalleI 
to I,, or is zero, since SI,, is perpendicular to Ieq, However, %?E cannot, in 
general, be zero as long as an external field is applied. Further, by definition, 
I,, is always parallel to the internal field Hi. Therefore ( B E )  must be equal 
to Hi apart from a proportionality factor. This factor can be shown to be unity 
by applying the operator B to an energy density term for which the corresponding 
contribution to the internal field is already known. 

and the instantaneous equilibrium direction of the magnetization vector at any 
point in the body may be determined from the condition that 

Since H' itself will usually be a function of I and its individual components, 
equation (4) must be used to determine the actual equilibrium direction of I. 
A help in solving this vector equation is the auxiliary equation I, x H,,'=O, which 
expresses the fact that the static component of the magnetization lies in the 
direction of the static component of the internal field. Equation (3) will be used 
later to compute some of the contributions of the different energy densities to 
the internal field. 

When the applied frequency is very high, the instantaneous direction of the 
magnetization vector will not coincide with its instantaneous equilibrium direction. 
The actual instantaneous direction may be found using the equation of motion 
(equation (l)), which may be rewritten as 

Hence 
H' = ( B E )  

I,, x H' = 0. 

. . . . * . (3) 

* . . I . .  (4) 

* The index here and in all further equations takes on values from 1 to 3. 
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since i x h1 is a very small second-order term and may be neglected. Because 
y =  1.7 x 107 cycles/sec/oersted, the left side of equation ( 5 )  is very small unless 
the applied frequency is high. When the frequency is IOW 1 x H'zO, and the 
instantaneous equilibrium and actual directions of the magnetization vector 
are always effectively the same. But when the frequency is high this is no longer 
the case, and the direction of i must be found by solving equation ( 5 ) .  Since 
Io is effectively the saturation value of the magnetization and its direction is fixed 
by the relation I,, x H,'=O, the instantaneous direction of the total magnetization 
vector I =Io + i may then be found. 

5 3. I N T E R N A L  F I E L D  C O N T R I B U T I O N S  
In this section the individual contributions to the total internal field from the 

five potential energy densities mentioned in Q 2 will be calculated using equation (3). 
The five energy density terms may be written as functions of the magnetization 
vector as follows : 

( U )  External-field energy density : Ecst = - H . I. 
(b )  Self-energy density (for a non-conducting ellipsoid only) : E, = J 2 NS,I t ,  
(c) Exchange energy density (Stoner and Wohlfarth 1948)*: 

E,,, = - *&I. I + gc x [(Vl,) . (Vr,)] 

(d) Crystalline anisotropy energy for single crystals (Becker and Doring 1939) : 
Hexagonal crystals : E,  = K i (  1 - a t )  + Kg'( 1 - ag2). 
Cubic crystals : E, = K , [ ~ 1 ~ a ~ ~  t c ~ 2 ~ ~ ~  + c(32~121 + K2[a12a22a32J 

=gKl[l - (a14+u24+~34)]  +K2[ctl2ag2~~]. 
( e )  Strain energy density for cubic single crystals (Becker and Doring 1939)t: 

Es,= - i h o o  2 u,PPZ% - 3Xiii{~2P12 + ~~2~3p-23 + ~3a1p31). 
In the above, al,  ag and a3 are the direction cosines of the magnetization vector 
with respect to the XI, X2,X3 axes, taken along the cubic axes of the cubic crystal 
and taken with the X ,  axis in the direction of the principal crystalline axis of the 
hexagonal crystal, so that a l = I l / ~ = ( I . i l ) / ~ ,  where i, is a unit vector along the 
X ,  axis, etc. The Pz3's are the components of the stress tensor referred to the 
same coordinate system. Kl', K,' and K,, K, are crystalline anisotropy constants 
which may be determined experimentally. Recent values of these constants 
are quoted by Kittel(l949 b). The NS,'s are the shape demagnetization constants 
applying when the coordinate system is taken along principal axes of the ellipsoidal 
specimen. N ,  is the Weiss molecular field constant, and C is a constant 
approximately equal to ~ J U ~ N , ~ ,  where (I is the grating spacing of the material. 
The  results of more accurate calculations of the quantity C are given by 
Lifshitz (1944) and by Stoner and Wohlfarth (1948). Finally, A,,, and hill are 
the saturation values of the magnetostriction constants of the ferromagnetic 
crystal in the [loo] and [ I l l ]  directions respectively. Numerical values of 
these constants for iron and nickel are given by Becker and Doring (1939, 
pp. 277-280). 

* This formula has been derived only for substances having cubic structure. 
t This expression is valid only for the region of elastic strain and for stress tensor elements 

independent of position (homogeneous stress). 
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Since the total energy density is to a very good approximation the sum of the 
individual energy density terms, the contribution to the internal field of each 
energy density term may be obtained by applying the operator R to each term in 
turn, One then finds the following results: 

HICxt =H=H,+h  . . . . . .  ( 6 )  
..... (7) 

HI,,, =N,J+ CV'I . . . . . .  (8) 

HI, = rT + 43 I (1 - by)] 6) i, Hexagonal , . , , , , (9) 

(HIc), = 2Kl13 - - 2K2 - 131k21t ( j ,  k ,  I =  1 ,2 ,3  and permutations) 
Cubic . . . . . .  (10) 

(11) 

14 3 15 

3 (H1dj = p r ( h l 0 0  - h l I P , k  + h l l l l ~ ? k I k '  ...... 

Some of these equations are written directly in terms of vectors, others in terms 
of the j th component of the corresponding vector, in the interest of simplicity. 

From the above expressions the direction and magnitude of each contribution 
to the total internal field may be obtained. Previously, Bozorth (1949) obtained 
the approximate maximum magnitude of the internal field contributions arising 
from several of the energy density terms considered here by equating the terms 
separately to HI.1. Further, Kittel (1948) computed the quantity I xH', for 
the case of crystalline anisotropy for several special directions and planes in 
single crystals, Finally, Brown (1940) has used a different variational approach 
to obtain general equations equivalent to (I, x Hi), '0, expressing the balance 
of torques on the magnetization vector when no oscillating field is applied, and 
including the static effect of all the potential energy terms considered here but 
with these terms expressed somewhat differently. The  present results, however, 
give both the magnitude and the general directional dependence of the various 
static and oscillating internal field contributions in convenient form. It should 
be noted, however, that theinternal field contributions due to crystalline anisotropy 
and strain in cubic crystals are not unique, because the relation x? + xZ2  + R~~ = 1 
may be used to transform the expressions for the energy densities to different 
forms from those used here. Nevertheless, such indeterminacy does not affect 
the term I x H' which determines the direction of I ;  therefore both the direction 
of I and the effect of the above energy terms upon ferromagnetic resonance 
phenomena remain unique, 

0 4. FE R R 0 IM A G N E T I C RE S 0 N A X C E E X  P E R I M E N T S 

The foregoing internal field contributions may be used to compute the 
dependence of the magnetization curves of ferromagnetic single crystals along 
different crystal directions upon ellipsoid shape, crystalline anisotropy and applied 
stress. Part of such a programme has been carried out by Stoner and Wohlfarth 
(1948), who, however, used the method of direct minimization of the total magnetic 
energy density to obtain the dependence of the magnetization components upon 
an applied static magnetic field. In solving such a probIem, the actual internal 
field contributions derived here are unnecessary, although they shed additional 
light on the physical situation considered. In considering, however, the influence 
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of ellipsoid shape, exchange anisotropy, crystalline anisotropy and strain 
ferromagnetic resonance phenomena, explicit expressions for the internal field 
contributions are useful. 

In  a ferromagnetic resonance experiment two external magnetic fields are 
applied to an ellipsoidal ferromagnetic body. The specimen may be a single 
crystal or polycrystalline, non-conducting or conducting. The  fields are usually 
taken along two mutually perpendicular principal axes of the ellipsoid. One of 
the fields is large and static but can be varied in magnitude over a wide range; 
the other is produced by incident microwave electromagnetic radiation and is 
very small in magnitude. In making ferromagnetic resonance experiments, the 
frequency of the incident radiation is commonly held constant and the magnitude 
of the static field varied. It is found that a maximum of the absorption of micro- 
wave power in the specimen occurs for a unique static field strength, This 
resonant field strength, Her, is that field strength which makes the effective Larmor 
frequency of the spins of the ferromagnetic material, (y/27r)Heff, equal to the 
frequency of the applied radiation Y. Since the effective field Hcff involves all 
the internal field contributions, theoretical determination of the resonant field 
strength requires information concerning such contributions. 

I t  is usually assumed in ferromagnetic resonance calculations that the externally 
applied static field is always of sufficient strength to cause the resulting static 
component of the total magnetization vector to be substantially equal to the 
saturation magnetization of the material and to lie in the direction of the static 
field. Crystalline anisotropy and applied stress may tend to pull the static 
magnetization vector away from the field direction, but if the field is sufficiently 
strong [as is usually the case experimentally) such effects may be neglected, 
Then any influence of shape, crystalline anisotropy, or strain on the resonance 
phenomena arises from the interaction between their internal field contributions 
and the very weak oscillating component of the magnetization vector produced 
by the oscillating magnetic field of the incident radiation. 

There are two particularly important quantities which may be obtained from 
the results of a ferromagnetic resonance experiment. These are the Land6 
g-factor determined from the resonant magnetic field strength, and the damping 
factor which may be calculated from the shape of the microwave absorption 
resonance curve. The importance of these two factors in giving insight into 
the coupling between ferromagnetic electrons and between these electrons and 
the crystal field has been recently discussed by Kittel (1949a) and Van Vleck 
(1950). In the present treatment we are especially concerned with the calculation 
of the Land6 g-factor for different ferromagnetic specimen shapes, orientation of 
applied fields, crystalline nature and applied stress, although other quantities, 
such as crystalline-anisotropy and magnetostriction constants, may also be obtained 
from the analysis of resonance experiments. It is not expected that theg-factor 
of a given ferromagnetic material should depend appreciably upon any of the 
above conditions ; however, its calculation requires knowledge of the effects of 
these factors upon the resonant magnetic field. Such knowledge may be 
embodied in the explicit form of ETeff, and, given an experimental HOr for a specific 
microwave frequency, the corresponding g-value may be computed from the 
resonance condition v = (ge/4xmc)Heff. The presence in an experimental 
material of any anisotropy which is not recognized by an appropriate modification 
of HeRcan obviously cause an incorrect value ofg to be obtained from the expen- 
ment. 
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The ferromagnetic resonance condition may be obtained from the solution of 
the equation of motion (equation ( 5 ) )  when the explicit form of the internal field 
components is known. The equation of motion may be solved in any convenient 
coordinate system ; the most convenient is often the rectangular system 
(x1, x,, XJ, defined by coincident ellipsoid and single-crystal principal axes. 
For the present work it is useful to introduce another rectangular coordinate 
system (Xl‘, X,’, 4’) rotated with respect to the (XI ,  X,, X,) axis with the static 
applied field Ho always taken along the X,’ axis and the oscillating field h along 
the x,’ axis. By solving the equation of motion in this primed system, general 
resonance conditions appiicable to arbitrary orientations of the applied fields 
with respect to ellipsoid principal axes, single crystal axes, or an applied or 
intrinsic stress system may be obtained immediately. 

In order to solve the equation of motion in the primed coordinate system, 
the internal field vector must be resolved in the primed system. The internal 
field contributions given in equations (7) ,  (9), (lo), and (11) involve magnetization 
vector components referred to the unprimed system ; the transformation of 
the internal field expressions and the magnetization vector components to the 
primed system is straightforward and is accomplished by introducing the nine 
direction cosines ytzJ connecting an X,’ axis to an X, axis. One finds that the 
internal field components in the primed system due to shape effects, crystalline 
anisotropy, or strain may each be written in the general form 

5 5 .  THE GENERAL RESONANCE CONDITION 

(HI8),’ = 2 N8,Jk‘, . . . * * .  (12) 
L 

where the index (a’ denotes anisotropy due to shape, single-crystal structure, or 
strain. The NI,,, matrix elements are effective demagnetization constants due 
to anisotropy referred to the primed system ; they will, in general, involve the 

The equation of motion for arbitrary IVjk values may now be solved using 
equation (12). The components of the over-all internal field, including applied 
fields, are of the form (HI),’ = di,’ - c Na3Jk’, 

where H,’ =h, H,‘ =0, H3’ =Ho. Since the static field Ho is taken as far greater 
than any static anisotropy field, the static magnetization vector will lie very nearly 
along the direction of the static applied field. In  this case, the components of 
the magnetization vector are: 1: =&’ 12’ =i2’, 13’ =Io. The solution of the 
equation of motion with the above form of HI’ was first carried out by Kittel 
(1947, 1948). In  Kittel’s analysis the [P,,] matrix was diagonal and the 
following expression for Hef f  was obtained: 

I/j’s. 

. . . . . , (13) 
1 

Hcf f  = {[H,’ + (Na,, - NR33)10][HOr+ (W1, - AT”33)Io]}1’2, . . . . . . (14) 
where No’ is the resonant value of the static field. 

It turns out that the same result is an excellent approximation when the 
[Na,kl matrix is not diagonal, provided that Ho is large enough to make I ,  lie along 
its direction. In  the general case of arbitrary orientation between applied 
fields and crystal or ellipsoid axes, the off-diagonal elements of [Wjk] are not, 
in fact, zero. Nevertheless, the same resonance equation applies very closely. 
In order to compute the resonance shifts due to the various different sources of 
anisotropy, it is thus only necessary to calculate the diagonal elements of the 
corresponding [Naj,] matrices. When two or more sources of anisotropy arc 

63-2  
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present in a specimen to be used in a resonance experiment, the matrix elements 
occurring in the resonance condition are the sums of the matrix elements arising 
from the individual anisotropies, as can readily be seen from the linearity of 

equation ( 5 )  in H' and of equation (12) in N",. 
In the Appendix general expressions for the (N",,- NaS3) and (A7nz2- Na,,) 

factors occurring in the resonance condition are given for shape, crystalline 
anisotropy and strain anisotropy contributions. Special cases of these expressions 
for situations which have arisen or might be important in resonance experiments 
are considered in the following section. 

$6. A N I S O T R O P Y  C O N T R I B U T I O N S  T O  THE RESONANCE 
C O N D I T I O N  

(i) Shape 
Ferromagnetic resonance experiments have thus far been carried out with 

spherical magnetic specimens of high resistivity (Hewitt 1948, Bickford 1950, 
Yager et al. 1950) and with either high resistivity ferritic or conducting metallic 
disc-shaped specimens (Griffiths 1951). In these cases the applied magnetic 
fields are always taken along principal ellipsoid axes (considering a thin disc as 
an oblate spheroid) and the general treatment in the Appendix is unnecessary; 
the results given in equations (23) are only required when field directions and 
principal axes do not coincide. The shape effects derived below apply both 
to polycrystalline and to single crystal materials. 

The effective fields for the above specimen shapes are easily obtained by 
substituting the shape demagnetization constants Nsj directly for the Najj 
elements occurring in equation (14). For a non-conducting isotropic sphere 
NS1 =NS,=NS,=4n/3 and He,  reduces to Ht. There is no shape anisotropy 
here and hence no resonance shift. For a non-conducting thin disc the demagneti- 
zation constants for fields lying in the plane of the disc are approximately $/m, 
while that for a field normal to the disc is (47~-22~2/m), where m is the ratio of 
disc diameter to thickness (Osborn 1945, Stoner 1945). There are two field 
orientations of experimental interest, both applied fields lying in the plane of 
the disc, and static field perpendicular to the disc. The demagnetization constants 
in these two cases are, respectively, NI = N3 = r2/m, N, = 471 - 29jm, and 
NI = N2 =rr2/m, N3 =47 - 2v2/m. The corresponding effective fields are 

(non-conducting discs). . . , . . . (15) 
When the resistivity of a specimen is not so high that it may be considered 

as virtually non-conducting, the skin effects begin to become important. Because 
of this effect, the magnetic fields in the specimen are inhomogeneous since there 
is a decay of the amplitudes of the oscillating components of the field as they 
penetrate into the disc. In  this case the expression for the magnetic potential 
energy shauld contain terms arising from and depending upon the distribution of 
V. I, which would cause the simple expression for E, given in 5.2 to be incorrect. 
A good approximation to the correct value of the effective field in this case may 
be obtained, however, by remembering that at the high frequencies employed 
the skin depth is always considerably less than the diameter or thickness of the 
disc. Then the demagnetization constants in the direction of oscillating field 
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components have approximately the values they would have if the disc were of 
infinite diameter. Therefore, for parallel fields, N ,  =0, N,  = 4 ~ ,  N3 =$/m, 
while for perpendicular static fields, Nl = 0, N, = 0, N3 = 47-2d/m. The  
effective field expressions are 

(conducting discs). . . . . . . (16) 

Experiments designed to compare gsphere with gd,sc (parallel field orientation) 
for a polycrystalline ferrite of high resistivity were performed by Hewitt (1948), 
who obtained reasonably good agreement between the g-values, indicating that 
the resonance formulae for these cases are at least good approximations. Further, 
an experiment comparing g,, and g, for a supermalloy disc specimen was carried 
Out by Kittel, Yager and Merritt (1949) who, found a difference between g,, and 
g, of 2.5 %. Using the above expression for IFff,, which is slightly more accurate 
than that used by Kittel et al., one obtains a difference of approximately 1.1 %; 
this can probably be ascribed to inexact knowledge of Io. 

(ii) Exchange 
In order to evaluate the effect of exchange anisotropy on the resonance condition 

it is necessary to add the exchange internal field contribution given in equation (8) 
to the equation of motion and solve it with this added term. If the magnetic 
material is non-conducting, however, the contribution will be zero since VzI 
will then be zero and I x N,J is identically zero. Because of the skin effect 
present when the material is conducting, V I  is not zero and becomes 0% 
Exact solution of the equation of motion with such a term taken in conjunction 
with Maxwell’s equations is a lengthy complicated process since the material 
becomes triply refracting to microwaves. The  results of such a solution by the 
author (Macdonald 1950) concur with those of a perturbation treatment by 
Kittel and Herring (1950) in indicating no appreciable resonance shift from this 
cause for metals at room temperature. 

(ii) Magnetocrystalline Anisotropy 
Thus far no resonance experiments have been reported on hexagonal-close- 

packed single crystals. Experiments to determine the anisotropy constants Kl‘ 
and K2‘ might be carried out with the static magnetic field always in a plane 
perpendicular to the principal crystal axis or, alternatively, with the static field 
lying in a plane containing the crystal axis. If 8 is the angle between the static 
field and the crystal axis, the direction cosines in these two cases are, respectively, 
Y z ~  = 1, yI1 = y31 = 0 and yil =sin 8, y31 =cos 8, yzl = 0. The  corresponding 
contributions from equations (24) (see Appendix) to the effective field are 

2 K  ’ 4K2’ (iVc,, - Nc,,)I, = 1 COS 28 + - sin2 8(1+ 2 cos 28) ; 
IO IO 

and 

(NcZB -. Nc33)10 = 2K,’ - cos2 8 + K2‘ - sin2 28. 
IO IO  

. . , . . (18) 
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When 0 =O the last two equations reduce to a result first obtained by Kittel(1944 
who considered terms in K,' only. For cobalt the factors 2K1'/10 and &'/]o 
are approximately 6,000 and 700 gauss respectively, showing that crystalline 
anisotropy can affect the resonance condition greatly for this material. 

Two interesting experiments have been carried out on cubic single crystals, 
Kip and Arnold (1949) investigated the dependence of the resonant field for a 
silicon-iron single crystal disc upon the angle 0 between the static field and 
the [OOl] crystal direction when the static field was constrained to lie in the 
(010) plane. In this case the non-zero direction cosines are y11=y33=cos6', 
y13= -y,,=sinO and yzZ = 1. The contributions to the effective field from 
equations (25) are 

K2 
(NC,, - lVc32)10 = cos 48 ; (Nez2  - NC33)10 = 2 (3 + cos 40) + E sin2 28. 

0 0 

. . . . . . (19) 
These results were first obtained by Kittel (1948, 1949a). Kip and Arnold 
found the expected dependence of H,' upon 0 at constant applied frequency and 
obtained a good value of Kl for silicon-iron as well as a g-value independent of 6'. 

Recently Yager, Galt, Merritt and Wood (1950) investigated the effect of 
rotating the static field applied to a single-crystal ferrite sphere in a (110) crystal 
plane. If 0 is the angle between the applied field and the [OOl] direction, the 
non-zero direction cosines applying to this case are 

r l l = r 1 2 = 1 / ( 1 / 2 ) Y 3 3 = 2 / ( 1 / 2 )  'Os', Y31=YS2= - d(1/2)y13= d(1/2)sin8' 
The general equation (25) then reduces to 

Kl K2 (Ncl1 - NC3.J10 = 

(Ne2, - NC33)10 = 

(2 - sin2 0 - 3 sin2 28) + - sin2 8( 1 - 60 cos2 0 + 65 cos4 e ) ;  
0 161, 

(1 - 2 sin2 8 - - sin2 20 - - sinz 20( 7 - 5 cos2 0). 
8 

. . * . . . (20) 
IO ) Zo 

The first-order terms in these equations have been reported earlier by Bickford 
(1950). Yager et al. found the 0-dependence indicated by the above equations 
and an excellent value of Kl for the ferrite investigated: the K2 terms were 
apparently negligible for this ferrite. 

(iv) Strain 
From the general equations (26) given in the Appendix it is relatively easy 

to compute the strain contribution to the resonance condition when the applied 
fields lie in a (010) or (110) crystal plane and none of the stress tensor elements is 
zero. Here, however, we shall consider some even simpler situations of more 
experimental interest. 

In  the case of uniform pressure P applied to a ferromagnetic ellipsoid, the 
stress tensor elements are given by e3 = -Pa,,, and there is no contribution 
from the general equations (26) because there is no strain anisotropy. This is 
not the case, however, for plane stress even in the simplest and experimentallY 
most interesting case of a purely radial stress To (To is positive for tension, negative 
for compression) applied at the circumference of a circular disc. Here the only 
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non-zero stress tensor elements are (for a disc with its normal in the [OlO] direction) 
pii = p33 = To. , On substituting these results into the relations (26), and simpli- 
fying, one obtains 

(,/22-73?)* 
3hi00T0(y ‘ 2 ) .  (NSt,, _NSt ) I  3 h d o  

33 o=- (p - NJt 
IO 11 33)IO= - 12’- 32 9 

IO 
* . . . . * (21) 

In an experiment to measure the effect of applied stress of this character, produced, 
for example, by means of a draw-strap around the disc, the applied magnetic 
fields would be taken either in the (010) crystal plane (the plane of the disc) or 
with the static field perpendicular to the disc. For these two conditions the above 
equations reduce to 

1 Parallel fields : (Nstll - Nst33)10 =o ; 
Perpendicular static field : (Nstll - N S t 3 3 ) I o  = (Nstzz - Nst3,)l0 = ~, - 3hooTo 

(NSt2, - NSt33)10 = ~ ~ ~ o o T o / ~ o ,  

I O  J 
I .  . . . . (22) 

In neither case is the contribution to the effective field zero, although rotation 
of the fields around the normal to the disc has no effect (crystalline anisotropy 
neglected) since there is no strain anisotropy in the plane of the disc. These 
non-zero results are somewhat unexpected and are discussed later in connection 
with actual experiments. 

Another simple stress system of experimental interest consists of a unidirec- 
tional stress T applied in the [p,, p2, p3] crystallographic direction. Here the 
stress elements are Pt3 =p$,T. In  the case where the applied fields lie in the 
plane of a single-crystal disc cut so that this plane coincides with the (010) 
crystallographic plane, and where the unidirectional stress is also applied in this 
plane, both the magnetostriction constants Aloe and A,,, may be obtained by 
measuring the change of H,’ as the fields are rotated with respect to the crystal 
axes, keeping the stress direction fixed with respect to these axes or, alterna- 
tively, keeping the stress direction fixed and shifting the stress direction with 
respect to the crystal axes. No experiments of this type have been reported as yet. 

The above strain contributions have all applied to cubic ferromagnetic single 
crystals. Ferromagnetic resonance experiments are often made, however, on 
polycrystalline materials in which the individual crystallites have approximately 
random orientation. The extension of the strain formulae to isotropic poly- 
crystalline material may be made in two different ways. In the first method 
the complete resonance condition, including self-energy, crystalline anisotropy, 
and strain contributions, must be averaged over all possible directions of the 
crystallite axes, preferably taking into account absorption line broadening due 
to relaxation processes, etc. Since this would be extremely complicated to carry 
Out, even if crystalline shape and size distributions were known, it is simpler to 
make the approximation of isotropic magnetostriction usual in dealing with 
polycrystalline aggregates of ferromagnetic crystallites. This approximation 
consists of taking hIoo =hill =A. The effective strain demagnetization constants 
in equation (26) then simplify to give 
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where the primed stress elements are referred now to the primed (field) coordinate 
system. 

When isotropic stress To is applied in the plane of a polycrystalline disc, the 
effective field contributions are given by equations (22) with AI,, replaced by A, 

The sign of these factors depends both upon the sign of and upon whether 
the applied stress is tensile or compressive. The change in the resonance field 
caused by these factors may be quite appreciable; for example, Kittel (194913) 
gives for 3AT0/10 the values 600, 600, 4,000 gauss for iron, cobalt and nickel, 
respectively, when To is taken as the breaking stress of the material. 

T\To resonance experiments deliberately undertaken to observe stress effects 
on single crystals or polycrystalline materials have been published as yet, 
However, the resonant field dependence on applied plane stress has been 
verified by Macdonald (1950, 1951 a, b)*, who investigated resonance shifts 
for thin nickel films evaporated on mica. Here, applied isotropic plane stress 
(independently determined from magnetometer measurements) was found 
to be produced by differential contraction between mica and nickel on cooling 
after evaporation. Such stress was dependent on film thickness and produced 
an apparent dependence of the g-factor on film thickness. No dependence of 
the g-factor on applied stress was observed, however, when the stress-corrected 
resonance condition was used. In the course of making resonance measurements 
from room temperature to the Curie point on a nickel disc silver-soldered to a 
copper block, Standley (unpublished) observed a decrease in the apparent 
g-value with increasing temperature. Calculations by the author (Macdonald 
1950) have shown that such decrease was only apparent, being caused by the 
temperature-dependent plane tension produced in the nickel disc by the greater 
expansion on heating of copper as compared with nickel. I t  may be postulated 
that a similar small decrease in g with increasinp temperature for nickel found by 
Bloembergen (1950) and reported to be within experimental error was caused by 
the same phenomenon. Further, the 40,; decrease in g with decreasing temper- 
ature over the range from room temperature to - 153" C. found by Bickford (1950) 
for a Fe,O, single-crystal disc may be susceptible to the same general explanation, 
although the magnetostriction constant for magnetite may depend significantly 
upon temperature in this region, The dependence of the resonant field upon 
unidirectional stress applied to a polycrystalline specimen has not been verified 
in detail experimentally so far, although Macdonald (1950) observed some 
directional dependence of H,P upon the angle between the applied static field in 
the plane of an evaporated nickel disc and the coplanar direction of a magnetic 
field applied during annealing of the specimen. 

5 7. CONCLUSION 

111 all the resonance experiments discussed In $ 6  the g-values obtained were 
substantially greater than 2.00, the value to  be expected for free electron spins. 
In  fact the great majority of all g-values measured so far have significantly 
exceeded the free electron value, usually lying in the range between 2.1 and 2.3. 
One of the objects of the present work was to investigate fully the modifications 
in the resonance condition caused by internal fields arising from various types of 
anisotropy, with the hope that the results might possibly explain some or all of 
the anomalous g-values that have been reported. 

* See also Griffiths (1951). 
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The bearing of the present results on theg-value problem may be summarized 

(i) The use of the effective field expressions given in (16) for a conducting 
disc decreases the experimental discrepancy between g,, and g, found by Kittel, 
Yager and Merritt to about 1 Yo. Since this is within the limits of experimental 
error, g is independent of field orientation. Nevertheless, the value of g found for 
supermalloy still remains about 2.19. 

(ii) The work of Kittel and Herring (1950) and Macdonald (1950) shows that 
the high g-values found for metals cannot be ascribed to exchange force effects; 
such an explanation would not, in any event, apply to non-conducting materials, 

(iii) The results of experiments on anisotropic single crystals are in excellent 
agreement with theory. There appears to be no g-dependence upon special 
crystalline directions, but the experimentally measured g-values are anomalously 
large. 

(iv) The g-factor has been found independent of applied stress, and the use 
of the correction terms to the effective field found when isotropic plane stress is 
present in a disc-like ferromagnetic specimen has satisfactorily explained an 
apparent dependence of g upon evaporated film thickness and upon temperature 
for nickel discs. Stress effects may also be pertinent to the complete interpretation 
of the g-value temperature dependence found by Bickford (1950) for magnetite 
at low temperatures. 

(v) The internal field results of the present paper, taken in conjunction with 
the experimental results of Macdonald on stressed and stress-free nickel films, 
would seem to render inapplicable Birks’ (1 948) suggestion that high g-values are 
due to internal anisotropy or strain fields. 

There has been much speculation as to the reason for the anomalously large 
g-values. A critical survey of the reasons suggested for the effect has been given 
by Kittel(l949 a), see also Van Vleck (1950). None of the explanations seems able 
to account for the phenomenon in detail, although it is likely that the effect is 
connected with spin-orbit coupling as postulated by Polder (1949) and by Kittel 
(1949a). There is as pet no detailed theory of the phenomenon, and it remains 
essentially unexplained. 

as follows : 

A P P E N D I X  
EFFECTIVE D E M A G N E T I Z A T I O N  C O X S T A N T S  D U E  T O  ANISOTROPY 

The problem considered here is the transformation of equations (7), (9), 
(10) and (11) for anisotropy internal-field contributions (referred to the fixed 
coordinate system (XI, X,, X,)) to the rotated coordinate system (XI’, X,‘, X,’) 
in order to obtain expressions of the form of equation (12) for the internal field 
contributions in the primed system. The NaIk demagnetization elements due 
to anisotropy defined by the transformation may then be used in equation (14) 
to give the general resonance condition for any orientation between primed and 
unprimed axes. 

(i) Shape (cf. equation (7)) 
Since equation (7)  is linear in Ij, the Ns3 shape demagnetization constants 

may be considered the diagonal elements of the demagnetization matrix referred 
to the unprimed principal-axis coordinate system. A coordinate tranformation 
of this matrix to the primed system then gives the desired result : 

Ns3B = Y32Ykl N B 2 ‘  
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Therefore the diagonal-element differences appearing in the resonance condition 
are 

(Ns11-Ns33)=E[[y112-Y3le]NYz; (NJ,z-Ns,3)=~;[yz,"-Y,,21Ns,. - + .. .(23) 
1 1 

(ii) Magnetocrystalline Anisotropy : Hexagonal Crystal (cf. equation (9)) 
The above procedure for obtaining NaJk elements is not applicable to this 

case because H', is here not a linear function of the I, components. Instead, 
the Hi, vector must be resolved directly in the primed system and the Unprimed 
1, components occurring in the resulting (H'&' field components expressed in 
terms of the I,' components. A linear dependence of the (IT',),' components 
upon I; ,  as in equation (12), is then obtained by dropping terms containing 
powers of i,' greater than unity. Such neglect is justified as long as I ,  $i;; 
this condition holds in practice. One obtains 

2 

2 (24) 
(Nol1 - NC33) = q [(K' + 2KZ')(Y3? - ~ 1 1 2 )  + 2&'(3y1i2 - ~ 3 1 2 ) ~ 3 1 ~ 1 ,  

(N"ss-Nc 33 1- - Io T[(K,'+~K~')(Y~?-YY~I? +2K,'(3Yz:-Y312)Y3?], 

where I has been replaced by I,. 
(iii) Magnetocrystalline Anisotropy : Cubic Crystal (cf. equation (10)) 

To simplify the succeeding formulae, the following functions of the direction 
cosines are defined : 

f j  = C ~ 3 a 2  ~ h 1 2  ; 

gz,m,n=hz,m,n[hl,ni,n+2(h,,,,Zth,,2,,}1, 

h, In, n = ~ 1 1  ~ m 2  ~ 7 1 3 )  
1 

The desired demagnetization element differences obtained as in (ii) are then 

The terms in Kl are in agreement with results obtained by Van Vleck (1950) 
from a quantum-mechanical treatment. General expressions for the second- 
order terms have not been given previously. As Van Vleck points out, it is 
noteworthy that the classical and quantum-mechanical treatments give exactly 
the same results, a t  least to first order. 

(iv) Strain (cf. equation ( 1 1 ) )  
Define the following quantity in terms of the stress tensor elements referred 

to the unprimed crystal-axis coordinate system : 
5 

'3, = [ ( h O O  - A1ll)*jk+ A 1 l l l p ~ k ~  

Then the expression for the internal field contribution may be written 

Transforming the matrix [S,,] to the primed system, one obtains 

(Hht)j= E W k .  
E 

NSt - 
3k - - E E YjiY h m  slm* 

2 ?n 
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Therefore the general expressions for the strain demagnetization element 
differences are 

pll - = rY3’31Y3m - Y12Ylm~A92m ; wZ2 - = x [YszYam -Y21Y2nl i~ lm-  
1 %  l m  . . . . . . (26) 
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