EFFECTS OF
change in n, for example, and not in any clectrical or
emissive properties. Coarse and fine particles from the
same lot do vary somewhat in activation as shown by
the fact that their emission color often changes system-
atically with the mean particle size of the fraction
separated.®

The calculations in this paper indicate, however, that
it may be sufficient to consider only effects due to
phosphor particle dispersion in the dielectric material

PHOSPIHOR
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to explain variations in brightness, the parameters Lo

and Vs, and efficiency, with particle size.
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Energy dissipation in solids is important in both transient and steady-state measurements. The results
of such measurements can be associated with a distribution of relaxation times provided the material is
linear. In the present work, general relations are derived for the attenuation factor, phase factor, and specific
dissipation function 1/Q pertaining to transmission of small amplitude stress waves in a material describable
by a distribution of relaxation times. Next, a specific, physically realizable relaxation time distribution is
used to obtain a creep function and to relate transient creep and frequency response measurements, Curves
of 1/Q vs frequency are calculated with a digital computer and show a region approximately proportional
to frequency at sufficiently low relative frequencies, a region of virtual frequency independence, and a final
region proportional to inverse frequency at high relative frequency. The relation of the present work to other
treatments of creep and internal friction is discussed, and the applicahility is examined of the analytic and
numeric results to creep measurements on metals and rocks, to low-frequency wave transmission in the earth,
to other damping results for the earth as a whole, and to higher-frequency wave transmission and vibration
results for geophysical and other solids. Good agreement between theory and experiment is found for fre-
quency regions where adequate data are available, indicating that all the damping phenomena considered

may be well described by a linear theory in the range of very small strain.

INTRODUCTION

HEN a solid is set in motion, some of the elastic
energy of the material is dissipated as heat. The
various means by which such energy loss occurs are
collectively known as internal friction.! The presence
and magnitude of internal friction can be inferred from
the results of two different but related kinds of experi-
ments which involve, respectively, the transient and
the steady-state response of the material. When a very
small constant mechanical stress is suddenly applied to a
solid, there results an “instantaneous” strain followed
by a retarded deformation whose rate continuously
decreases. The “instantaneous” strain, which is actually
transmitted with the speed of sound in the medium,

* A part of the present work, consisting mainly of the figures and
some of the mathematical results but none of the present analysis,
discussion, and interpretation was presented jointly by C. Lomnitz
and the author at the 1960 Helsinki meeting of the International
Geophysical Union,

' H. Kolsky, Stress Waves in Solids (Clarendon Press, Oxford,
England, 1953). This reference gives a good introduction to
internal friction and the various ways it can be measured. A
summary of modern methods of measuring dynamic elastic
properties is also given by K. W. Hillier, Stress W ave Propagation
wn Materials, edited by N. Davids (Interscience Publishers, Inc.,
New York, 1960), p. 183.
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is the usual Hooke’s law linear response. The remaining
response, which is termed transient creep and which
occurs particularly at temperatures low compared to
the melting point and at low strain amplitudes, is
characteristic of viscoelastic behavior. Internal friction
can also often be determined from a transient experi-
ment in which the sample is initially set vibrating and
the logarithmic decrement of its amplitude decay is
determined. This method is not very convenient when
a wide range of frequencies must be covered. Alter-
natively, energy loss occurs when a steady-state stress
wave Is transmitted through the sample, and the
magnitude of such loss can be related to the attenuation
factor of the waves.!

The transient and steady-state responses of a system
are intimately associated when the system is linear and
either can be calculated when the other is known.?
It is often useful, however, to make measurements of
both kinds on the same material since they usually
cover different time spans. For the study of materials
exhibiting short relaxation times, steady-state measure-
ments with periods less than one second are appropriate.

% J. R. Macdonald and M. K. Brachman, Revs. Modern Phys.
28,393 (1956).
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On the other hand, creep measurements can extend for
a week or greater and are useful when a material with
long relaxation times must be investigated.

In the present work, we shall consider the inter-
relation of transient creep and steady-state measure-
ments for a viscoelastic solid exhibiting a distribution
of relaxation times. This distribution will be selected,
in so far as possible, to make the resulting theoretical
creep and wave-attenuation functions agree with
experimental results. The entire treatment is based on
the validity of the principle of superposition and hence
on the linear behavior of the material. The theory is
therefore applicable only for small strains and small
wave amplitudes. Brinkman and Schwarzl® and Knopoff
and MacDonald* have given nonlincar theories of
energy loss in solids. Although all materials are of
course nonlinear, it is reasonable to expect that at
sufficiently small strains nonlinear behavior can be
neglected and that only linear response need be con-
sidered. It will be shown in this work that energy
dissipation in such a limitingly linear system can
explain considerable experimental creep and wave
attenuation results, and that therefore nonlinear effects
need not be invoked to describe such results.

In the next section, some possible creep functions
which imply a distribution of relaxation times will
be considered. Then, in the following section, general
relations between transient and steady-state response
functions will be presented and a specific, physically
realizable creep function obtained. Finally, quantitative
predictions of the theoretical work obtained from a
digital computer calculation will be discussed and
compared with various experimental data on solids.

THE CREEP FUNCTION

The response of a linear mechanical system to a
suddenly applied stress was formulated as an empirical
law by Boltzmann.® The result is an instance of the real
convolution® or superposition integral well known’ to
mathematicians before its use by Boltzmann. For a
linear viscoelastic material subjected to a stress o(f)
suddenly applied at {=0, the resulting strain is

e(¢)=M—l[a(z)+ f a(T)A(z-T)dr], ()

where M is the appropriate elastic modulus, and the
lower limit is here given as 0— to include the effects
of any impulse functions centered at =0 contained

3H. C. Brinkman and F. Schwarzl, Discussions Faraday Soc.
23, 11 (1957).

4 L. Knopoff and G. J. F. MacDonald, J. Geophys. Research
65, 2191 (1960). )

5 L. Boltzmann, Pogg. Ann. Phys. Lpz. 7, 624 (1876); Sitzber
K. Akad. Wiss. Wien, Math.-Naturwiss. Classe 70, 275 (1874).

¢ 1. T. Hirschmann and D. V. Widder, The Convolution Trans-
form (Princeton University Press, Princeton, New Jersey, 1955).

7M. F. Gardner and J. L. Barnes, Transients in Linear Systems
(John Wiley & Sons, Inc., New York, 1942), pp. 364-365.
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in ¢(/). This limit can be extended to — = if desired.?
The quantity A (#) is a memory or rate-of-creep function
and its appearance in the part of the response associated
with creep shows that the over-all behavior of the
material at a given time greater than zero is influenced
by past states of the system. The strain resulting from
a constant stress applied at (=0, o(f)=0ou(), is thus

e()=ocM[u()+¢@)], 2)
where

v()= f A(x)dx (3)

and «(#) is the unit step function defined so that
#{0—)=0 and #(¢>0)=1. The quantity ¢(¥) is usually
called the creep function.

A number of authors*-6_have treated the relation-
ships between such defining functions as (&) or A (D)
and other response or describing functions of the
pertinent linear system. Such relations apply formally
to the description of either viscoelastic or dielectric
behavior. For the viscoelastic body, the useful appii-
cation of theoretical results to the analysis of experi-
mental data depends upon a felicitous choice of ¢{1).
Many explicit functions have been proposed, with
forms of the power law'™" and logarithmic law®1%22
being found particularly useful. Some time ago, creep
applications of the modified logarithmic law

Y()=gIn[14 (/1) ], )

where g and 7, are constant, were discussed by Lyons.*
More recently, Lomnitz® independently suggested this
expression and showed that it could be used to describe
his experimental results for creep in igneous rocks under
shear stress. Unfortunately, measurements were not
extended to times such that (#/7¢) was of the order of
or less than unity ; thus, a complete comparison between
(4) and experiment was impossible and no distinction
could be made between (4) and simple Inf dependence.
The latter dependence clearly cannot hold in the limit

8 V. Volterra, Ann. Ecole norm. super. 24, 401 (1907).

¢ B. Derjaguine, Beitr. angew. Geophys. 4, 452 (1934).

10 C, Zener, Elasticity and Anelasticity of Metals (University of
Chicago Press, Chicago, Hlinois, 1948).

1B, Gross, Mathematical Structure of the Theories of Visco-
elasticity (Hermann & Cie, Paris, France, 1953).

12 E, R, Love, Australian J. Phys. 9, 1 (1956).

18], Schrama, “On the phenomenological theory of linear
relaxation processes,” dissertation (Leiden, 1957).

4 H. Konig and J. Meixner, Math. Nachr. 19, 265 (1958).

15D, R, Bland, The Theory of Linear Viscoelasticity (Pergamon
Press, New York, 1960).

1S, C. Hunter, Progress in Solid Mechanics edited by 1. N.
Sneddon and R. Hill (Interscience Publishers, Inc., New York,
1960), Vol. I, p. 3.

17 E. N. daC. Andrade, Proc. Roy. Soc. (London) A84, 1 (1910).

18 B. Gross, J. Appl. Phys. 18, 212 (1947).

19 B, J. Rigby, Brit. J. Appl. Phys. 11, 281 (1960).

2 F. Phillips, Phil. Mag. 9, 513 (1904).

1D, T. Griggs, J. Geol. 47, 225 (1939).

2 W, J. Lyons, J. Appl. Phys. 17, 472 (1946).

23 C. Lomnitz, J. Geol, 64, 473 (1956).
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of short times. Later, Lomnitz** showed theoretically
that (4) led to approximate frequency independence
of the specific dissipation, or internal friction factor
1/Q, in good agreement with many observations on the
attenuation of stress waves in solids. Earlier,
Bennewitz? carried out calculations of the steady-state
response with a creep function of the form (4).

Jefireys?6:27 has recently proposed a simple generali-
zation of (4),

YO =g [{1+/70}—1], )

where » is a constant which will here be restricted to
the range 0<»<1. Some physical interpretation of the
parameters of (5) will be given later. Equation (5)
reduces to the logarithmic form (4) in the limit » — 0.
A creep function of the form of (5) but with »<0 has
also been used to describe the behavior of polymeric
materials and has been derived theoretically from
consideration of the microscopic processes which may
occur during elongation under stress.*?® The A ()
function corresponding to (5) is

A@)= (¢/ro)[1+(t/70) . ©)

An expression of this form was first proposed by
Voglis® to describe the dielectric analogue of visco-
elastic creep—the time dependence of the charging and
discharge currents of dielectrics. Further dielectric
applications of equations related to (6), including the
case <0, will be discussed elsewhere by the author.

The form (5) is a generalization of both the simple
power law and the logarithmic form and has the ad-
vantage over the former that it leads to a finite rather
than infinite initial rate of creep. Unfortunately, both
(4) and (5) imply infinite final strain for constant
applied stress. Ways of modifying (5) to achieve a
form which predicts a finite final strain and thus allows
it to describe a physically realizable linear solid have
been discussed by the author.® The consequences of
one such modification of (5) will be considered in some
detail in the present work. The expression (5) is picked
as a starting point both because of its considerable
generality and because, as will be shown, its physically
realizable modification can explain an appreciable
amount of transient and steady-state data.

# C. Lomnitz, J. Appl. Phys. 28, 201 (1957). The square-root
signs in Eqs. (27), (28), (33), and (36) are incorrect and should be
eliminated. Their elimination makes only a small difference in the
1/ qu( curves shown, however. This error is corrected in the present
work.

25 K. Bennewitz, Phys. Z. 25, 417 (1924).

26 H. Jefireys, Geophys. J. 1, 92 (1958).

(1;75?). Jeffreys, Monthly Notices Roy. Astron. Soc. 118, 14

2 H. Burte and G. Halsey, Textile Research J. 17, 465 (1947).

¥ G. M. Voglis, Z. Phys. 109, 52 (1938).

®J. R. Macdonald, J. Appl. Phys. 30, 453 (1959). In this
reference the present y (f) was denoted ¢ (). The notation has been
changed in the present work to agree with that of the majority
of recent authors on viscoelastic relations,
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SYSTEM ANALYSIS

In this section we shall present the equations which
connect a given creep function with other functions
and observables of the described system. In particular,
general relationships will be derived between the phase
and attenuation factors of a stress wave in a solid and
the sinusoidal energy storage and loss factors of the
material. Then, Eq. (5) will be modified to make it
apply to a physically realizable linear system, and
pertinent measurable quantities will be derived and
evaluated.

Equation (1) shows that 4 (¢) is the impulse response
of €(t) for the creeping part of the system, since if o (¢)
is taken as 016(¢), where 6(¢) is the Dirac delta function,
(1) leads to

e()=(o:r/M[6(D+A(D)]. Q)

On differentiating (1), one obtains

de 1 [do tdo(r)

—=——[—+a(0—-)A (t)+f ——A(t—7)dr ] (8)
dt Mldt 0~ dr

This equation indicates that A(f) is also the creep

contribution to the step-function response of de/dt;

for if o (f)=0ouo(t), then

de/di= (ao/ M)[6()+A(1)]. 9)

In both (7) and (9), the () term represents the elastic
or Hookean part of the response and the A (#) term the
viscoelastic part which is associated with creep.

If now a sinusoidally varying stress is applied to the
system, the work per unit volume done in a cycle of

period £, is
o de(t)
A= f o ()—dt, (10)
0 dt

Equations (8) and (10) now allow us to identify
A(t)=dy/dt with the indicial admittance? of the
system, and we shall use the 4 (¢) and ¢ (¢) notation and
the notation of reference 2 hereafter.

The Laplace transform of A(f) defines the network
function

0(p)=2[A()]= f Aera, (1)

where p is a complex frequency variable. For 4 (#) func-
tions without singularities at the origin, Q(0)=y(),
where (oo/ M)y/() is the final strain arising from creep
when a step function of stress is applied at ¢=0. For
sinusoidal excitation of the form o(f)=oc¢ei?, the real
part of the complex frequency variable p may be taken
arbitrarily small and the network function Q(p) (not to
be confused with the quality factor appearing in the
specific dissipation 1/Q) may be separated into real and
imaginary parts,

Q(p) = Q(iw)=J («)—iH (). (12)
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The dynamic or complex compliance relating e(iwf)
and o (iwf) is then M14Q(iw)].

For sinusoidal applied stress, we may follow the
procedure of Collins and Lee® to obtain the following
one-dimensional equation for displacement U (x,#) for
plane waves incident on an isotropic material describ-
able by superposition,

U U U
Vi—=—t—%d,
ax? A o

(13)

where the star denotes the convolution transform,®7
the relations e=dU/dx, Eq. (1), and d¢/9x=pd*U /38
have been used; p is the material density, and V.,
= (M/p)}is the elastic (zero dissipation) phase velocity.

On taking the Laplace transform of (13) with respect
to £, one finds

du_pUHQ()

dx* y2

=y (p)u, (14)

where u(x) = L[ U(x,}) ]. For given initial conditions and
a physically realizable form of Q(p), Eq. (13) can, in
principle, be solved for U{x,?). Here, we are primarily
interested in the x dependence of the plane wave in the
material. From (14), this dependence for decaying
waves will be of the form

(13)

w(x)=upe V= uge™ Fr=ppe~ @+,

where £ is the wave number and y(iw)=a+18 is the
transmission factor. Here o is the attenuation factor,
and the phase factor is 8=w/V, where V is the phase
velocity.

Equations (12) and (14) lead to

a(w)+iB(w)= (iw/V)1+T (@) —iH () . (16)

On separating real and imaginary parts, one finds the ‘

general relations®

e G G I

(@)

[H(jjw(w))TH}' (18)

In the zero dissipation case, J(w) and H(w) are zero,
and (18) yields =w/V ., the correct result for this case.
Note that Eq. (18), together with the definition of 5,
allows one to calculate the phase velocity V when creep
and loss are present and described by the functions
J(w) and H(w). '

Either by analogy with the dielectric case or by

52%(%)2[14—1(@]

31 F. Collins and C. C. Lee, Geophysics 21, 16 (1956).

32 Some time after the derivation of (17) and (18)‘in 1958
it was found that equivalent expressions had been published by
T. Alfrey, Jr. and E. F. Gurnee, Rheology, edited by F. R. Eirich
(Academic Press, Inc., New York, 1956), Vol. 1, p. 387.
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using Egs. (8) and (10) directly, one can show® that
the energy dissipation per cycle in the system for
sinusoidal driving stress is proportional to H(w) and
the maximum stored energy is similarly proportional to
[14J(w)]. Since the specific dissipation factor is the
ratio of energy dissipated in a cycle to the maximum
energy stored during a cycle, it may be written as

1/Q=H(w)/[14+J ()], (19)

allowing (17) and (18) to be rewritten in terms of
J(w) and (1/Q)%. Then these equations may be com-
bined to yield the exact result

1 2a/8
0 1—(o/B"

which reduces to the wusual approximate form,
1/0=%2a/B, in the small-dissipation case. Note that
1/Q is independent of stress amplitude as expected for a
linear system.

When the functional form of ¢() or A(¢) is known,
one can obtain J(w) and H(w) by carrying out Fourier
cosine and sine transforms? of 4 (¢). In order, however,
to obtain equations which are most convenient for
computation and which represent a physically realizable
system, we shall work with a distribution of relaxation
times function Gi(r). Actually, this function here
describes a distribution of retardation times,:13:32 hut
this distinction, a matter of nomenclature, will not be
stressed herein. In the present case, it will prove
convenient to use the variable z=r¢/7, where 75 is a
fixed relaxation time such as that occurring in Eq. (3).
When G(z)=G1(r) is known, the following quantities
may be calculted from it?:

(20)

* 271G (z)dz
=rof —— 21
2 ](: 2+ (pro) eV
* G(z)dz
W)= , 22
W)=r0 f o (22)
® 271G (z)dz
W)=Wre ) 23
mon=wn [ = (23)
A= [ =6@eTd, 24
(T f G ()e-Tds (24)
¢(T)=rof A(x)dx
T %
—r, f G (5 dads
0 0
o f PG —eT s (5)

3 B. Gross, J. Appl. Phys: 19, 257 (1947).

Downloaded 24 Jul 2007 to 152.2.62.11. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



SUPERPOSITION MODEIL OF
on interchanging the order of integration in (25) and
integrating with respect to x. In these equations,

'=wrg and T'=1/7. To avoid introducing new sym-
bols, we have not distinguished between such functions
as J{w)=J(W/ry) and J(W) in Egs. (22)-(25) and
throughout the remainder of the paper. If A(T) is
known, G(z) itself can be readily obtained on inversion
of (24), yielding

2 G (z)= 7 [A(T)],

where £7! is the inverse Laplace transform operator,
here involving the variable T instead of the usual .
The A(T) function corresponding to Eq. 6 is

(26)

A(Dy=qr [1+T7 2n
The associated G(z) is, from (26),
G(z)=(g/m0)z" e */T(1—). (28)

An equivalent form was first given by Voglis.® This
result, in turn, leads to

Q(P)=q(pro)er™ L (n,pr0), (v<1),

which involves the incomplete gamma function® a
fact first mentioned by Jeffreys.?” Equations (22) and

(29

(23) yield
q © gl =re~*dz
son=—— [ . G0
T1—»Jy 2402
gW ® e *ds
HW)= f : (31)
T (1 - 1}) i) 22 “I‘ W2

The last two integrals may be expressed in terms of
Lommel functions of a single variable,

J(WM)=g W[ (1-»S,_ 5(IW]), (30

HW)=q| W[ (sgnW)S,—14(|W1), (31)

but these functions are not sufficiently well tabulated to

be useful over the entire ranges of W and » of interest.

For large W, they lead to J(W)— ¢(1—»)/W? and
HW)—g/W.

A more important difficulty is that the Gy(r) corre-

sponding to (28) cannot be normalized when »>0. It
is easy to prove that

T(0)=0(0)=¢()= f Gi(ndr,  (32)

but (30) shows that J(0)= o, consistent with ¢ (= )= oo
from (5). This failure of normalization means that
(27) and (28) do not describe a physically realizable
relaxation system. In fact, ¥(o )= oo implies an infinite

M A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Company,
Inc., New York, 1953), Vol. 2, pp. 133-143.

% G. N. Watson, Theory of Bessel Functions (Cambridge
University Press, New York, 1944), 2nd edition, pp. 345-352.
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number or concentration of rclaxation times, an
impossible requirement for a finite piece of matter.

In previous work,® various modifications of G1{7) or
A (t) were suggested which would lead to a physically
realizable system without appreciable alteration of
¥(£) in the main region of times usually accessible to ob-
servation. The lack of convergence of (32) in the present
case arises from too slow a decay of the density of
relaxation times at long +’s or short z values. As
discussed previously, normalization can be achieved
if an increase in the decay rate of G,(7) is made for long
7's exceeding a specific value which may be called ...
Such an increase will result in a smaller density of
relaxation times for 7>, than predicted by (28) and
can lead to finite final strain. Dealing again with the z
variable, convergence is assured if we take, for example,

G(z)=(g/r0)a" e *(z/a)*/T(1—»), 0<2<g,
G(z)=(¢/r0)d7e*/T(1—»), 22a,

(33)

where =7/ 7, and will usually be very small compared
to unity. For z<a, the initial slope of G(z) on a log-log
plot is two instead of the value (1—») which follows
from (28). Any value greater than one could have been
used to ensure convergence of (32). Were experimental
creep data available for such long times that the actual
distribution of very long relaxation times could be
inferred, a different slope than the value here used or a
different form of the distribution function in this region
might prove preferable. One possibility would be to set
G(z)=0{or 2< . In the absence of such data, the present
initial slope of two is a reasonable choice. Other alter-
natives will be discussed in a later paper dealing with
dielectric phenomena.

On substituting Eq. (33) in (24), one can obtain the
modified rate-of-creep function,

q [I‘(l—v, a+aT)
(-l (1+T)—

A(T)=

+a e (aT)H1-(1 —{—aT)e’“T}]. (34)

When a1, (34) reduces to (27) to good approximation
as long as a7<1.

It is easiest to obtain ¢(7) from (33) and (25),
yielding

q
r{1—»)

I'(—=», a+aT)
(1+71)~
~ee= 1+ Enr-en|

¥(1)=

[rc-s0-
(39)

From this expression it follows that ¢ (0)=0 as it should
and that

q

xb(w):F(l_v)

[T(=» a)+ae]. (36)



2390 I.

30
107 v=ol
10' b
L 10°
r 0?
A7
qQ -
10
IOO:"
1
1I6'H
o005l T NS NV | 1 1
0% 10° ' w° 1o © 1 ©
w

F1c. 1. 1/¢Q vs normalized frequency W for »=0.1,
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Thus, the final-strain is finite and positive for ¢>0 as it
must be for final mechanical stability. For ¢<1, series
expansion of the incomplete gamma function leads to

g(1—y—inag), »=0,

w = - 1—»
Y(=)=< - ¢ [a‘”(1+v‘1+ a )_I‘( )]’
T(1—») 1—v v

O0<r<l,

(37
where v is Euler’s constant. In the earlier note®® some
of the terms appearing in (37) were inadvertently
omitted.

The J(W) and H(W) functions corresponding to

(34) are
? [a‘"e"‘{ 1 v
T(1—»L~

a

a

W}

®© zl—yewzdz
+ f ] (38)
ZZ_‘_ W2

a

tan™!

(W)=

H(W)= [a_, (/) In{1+ &/ W)}

® gre2dg
W f ] (39)
a z2+ W2

I'{l—»

These equations are in a form appropriate for compu-
tation with a digital computer and may be used in (19)
to yield the dependence of 1/Q on W.

When a0, Egs. (38) and (39) reduce to (30) and
(31). In addition, the main contribution to J(W) and
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H(W) arises from the integral terms when 100a<W;
the other terms are important when W is of the same
order of magnitude or smaller than e. One principal
region of interest of W will be W<1. For ekW<1,
the main contributions to the integrals in (38) and
(39) will occur for z near W, and we can thus set ¢~ to
unity and @ to zero in this case to good approximation.
The resulting integrals may be treated as Mellin
transforms, leading to

J(W)=2qT' () cos(mv/ )W, 0<p<2,

. (40)
H{W)Y=qT (v) sin(xv/2) W,

—1<p<1.

Two cases must now be introduced depending on the
magnitude of J(W), which of course depends on y (o)
through (36) as well as on W and ». Equations (19)
and (40) lead to

1/Q=H (W)= (») sin(xv/ )W, (J(W)«K1),
0<p<y,
(JWy»1).)

(41)
1/OH (W) /J (W)=Xtan(rv/2),

Note that a 1/Q much less than unity, necessary for
agreement with experiment, is possible with J(W)<1
for any value of » in the range 0<»<1 but that 1/0«1
requires »<<1 when J(W)>>1. Whenever »<1, (41)
shows that 1/Q will be either completely frequency
independent or virtually so.

In the singular case =0, one can obtain approximate
values of J(W) and H(W) when a&W by setting ¢=0
in (38) and (39) and treating the integrals as Laplace
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F16. 2. 1/¢Q vs normalized frequency W for »=0.17,
a=1071 and zero, and various g values.
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transforms. The results of such a procedure are?*

J(W)=q[cosWei| W | —sin| W|si|W|],

v=0,¢ (42)
H{(W)=—q sgnW[sin| W|ci| W|+cosWsi| W|].
When W<<1, these results become, approximately,
J(W)=q(an | W] —y—In|W]],
LKL,
43)
v=0,

H(W)=2g sgnW[3nr+|W|{v+In| W|}].

H(W) will usually dominate in the expression for 1/Q
in the present case and will eventually lead to a slow
decrease in 1/Q as W decreases.* :

Values of the quantity 1/Qq versus W have been
calculated from (38) and (39) with a digital computer
for various values of a, », and ¢g. Some of the results
of such calculations are presented in Figs. 1-4. Those
figures which do not have a value of @ shown on them
were computed with ¢<KW, equivalent to a=0. The
para-eters shown on the curves of Figs. 1-3 are values
of ¢, while those shown on Fig. 4 are » values. In Fig. 2,
the effect of taking a=1071° has been shown and com-
pared with the results obtained with e<<W(a=0). In
general, the curves will begin their left-hand decays for
W values near W =g, as illustrated in Fig. 2. Since this
decaying region is generally far below the low-frequency
region accessible to observation, only a single instance
of such decay has been shown.
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Fic. 3. 1/¢Q vs normalized frequency W for »=0.5,
a=0, and various g values.
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F16. 4. 1/¢Q vs normalized frequency W for various »
values, =0, and ¢=0.01.

The level regions where 1/Qg is independent of
frequency should be especially noted in Figs. 1-4. The
values of 1/Qq in these regions are consistent with the
predictions of Eq. (41) when pertinent. The attenuation
and phase factors which follow from (40) when
(1/0)*«<1 and »>0 are approximately

a=qT (v) sin(wv/2)W/2V .74,

0<r«],
(49)
LW,
B=W/V ¢ro,
for J(W)<1, and
o=[¢T'(v) sin(wv/2) tan(wv/2) PW12/2V 1,
0<pr<i,
(45)
aL<WK1,

B=2[qI'(v) cos(mv/2) PW'12/V 7,

for J(W)>1. Since »<1 is the only condition which
results in regions where 1/Q is both frequency in-
dependent and much less than unity, the usual experi-
mental results, both (44) and (45) show that a will be
closely proportional to frequency in the constant 1/Q
region of interest.

When oK1KW and 0<»<1, expansion of the
Lommel-function relations (30’) and (31’) show that
for (1/0)1,

1/0=q/W,
0<v<],
=W/ 20V Q=4q/27,V,, (46)
a<LIKW,
gW/ToVe.

In this region where 1/Q decreases as W1, the attenua-
tion factor is frequency independent and deterniined by
the properties ¢, 7o, and V, of the material in question.
The frequency dependence of 1/Q in the region W<a
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depends somewhat on details of the distribution of
relaxation times for 7> 7. For the present distribution
function, 1/Q is approximately proportional to W for
W<aand (1/Q)*1.

DISCUSSION

In the following discussion, we shall consider various
data to which the present results may apply and shall
present a brief summary of work by various authors
which is pertinent to the microscopic interpretation of
the parameters g, », and . In order to establish firmly
the applicability of the present distribution-of-
relaxation-times model to the analysis of experimental
data, it is necessary to have available either 1/Q vs
frequency measurements in a range that extends from
W~10 down to perhaps 10~ or less or to have small-
strain creep data in the range of times near 7o. Data
of either type will allow 7o to be quite accurately
determined if the present results are applicable and
should permit reasonable estimates to be made of ¢
and » as well.

In the usual wave transmission measurements of 1/Q,
the maximum strains produced in the material by a
stress wave are of the order of 10~ or less. The specific
dissipation factor 1/Q is usually found to be independent
of strain amplitude in this range for polycrystalline
metals®® and the response of the material may be
considered linear. In some metallic single crystals,?
however, linearity is not reached until the strain
amplitude is less than 10=7. On the other hand, most
creep measurements involve maximum strains which
considerably exceed 10~° The present theory can,
therefore, only be applied to creep experiments in the
range of strains for which it has been established that
linear response'is obtained. As Eq. (2) indicates, this
requires that the total strain at a given time after the
application of a constant stress oo be proportional to this
stress. Furthermore, direct comparison between 1/Q
results obtained from wave transmission measurements
and those obtained for the same material by the appli-
cation of linear analysis of the present type to creep
experiments should only be made if it is certain that
the linear range of strains is not exceeded in either type
of measurement.

Creep measurements are usually made with either
tensile or shear stress applied, while a large number of
different kinds of waves such as Rayleigh, shear, and
compressional waves may be produced by earthquakes
or used for internal friction measurements in solids.
Ideally, distinctions should be made between these
different phenomena since they will each have specific
1/Q functions associated with them.* It would obviously
be wrong to compare directly 1/Q values derived from
creep measurements under shear with those obtained

3 W, P, Mason, J. Acoust. Soc. Am. 28, 1197 (1956). .

37 T, Fleeman and G. J. Dienes, Rheology, edited by F. R. Eirich
(Academic Press, Inc., New York, 1956), Vol. 1, p. 201.

38 J. R. Macdonald, Geophys. J. 2, 132 (1959).
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from measurements on the same material using com-
pressional waves.

Creep and Internal Friction

Because of the restriction to the linear stress-strain
region, viscous or steady-state creep? is excluded from
present consideration. Even in measurements of tran-
sient creep it appears that the linear stress-strain re-
gion is often exceeded. For generality, some transient
creep results will be mentioned herein, however, for
which no test of linearity was made and the linear region
may be exceeded. When (¢/7¢)>>1 and logarithmic time
response of creep is found, Egs. (6) and (9) may be sim-
plified to show that (¢{de/dt) should be a linear function
of the applied stress oo. Lomnitz? has indeed found such
linearity for at least the early part of his creep tests on
rocks under shear stress. We may thus be assured that
the response of the materials was linear over at least
part of his total strain range, which extended from
about 3108 to about 1.5X10~* rad.

Another restriction on creep in the linear region is
that it be recoverable or reversible. On removal of the
applied stress, the material should creep back toward
its original shape, reaching it in the limit of long times.
Lomnitz® measured such recovery, and it appears
likely from his results that most or all of the strain was
reversible. Ké&%® has carried out measurements on
internal friction and creep in polycrystalline aluminum
and finds that the results are mutually consistent, the
creep is recoverable, and the material behaves as a
viscoelastic solid. He interprets his results on the basis
of grain boundary slip and keeps the total shear strain
in creep less than 2X 1075, essentially within the range
that Mason®® found the internal friction of poly-
crystalline aluminum to be amplitude independent.

Two review articles* and a book?* have recently
appeared which discuss transient creep in metals in
some detail. It appears, particularly from the work of
Wyatt,? that logarithmic creep predominates for
polycrystalline metals at relatively low temperatures
while Andrade power-law creep,"” described by e(f) « #,
yields a better fit to the data at higher temperatures
and larger strains. In the present analysis, the basic
expression for y(f) given in (5) or that in (35) grades
almost continuously from the logarithmic form for
»=0 to the Andrade form for v=%. Note, however,
that »=1 does not yield exactly the Andrade power law
function since the latter predicts an infinite initial
rate of creep while (9) and (34) lead to gog/M o for
the initial rate. It is well known that creep increases
rapidly as the temperature is raised, and insofar as a
generalized power law can describe the creep results on

® T, S. K¢, Phys. Rev. 71, 533 (1947).

4 A, H. Sully, Progress in Metal Physics, edited by B. Chalmers
and R. King (Pergamon Press, New York, 1956), Vol. 6, p. 135.

4 H, G. Van Bueren, Imperfections in Crystals (North-Holland
Publishing Company, Amsterdam, 1960).

22 0, Wyatt, Proc. Phys. Soc. (London) B66, 459 (1953).
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metals, it appears that » must be taken temperature
dependent, increasing with temperature from a value
near or equal to zero which is appropriate at tempera-
tures low compared to the melting point of the material.

The results of Wyatt* indicate that in the usual
range of temperatures the quantity here denoted
oog/M is approximately proportional to absolute
temperature. Transient creep still appears at tempera-
tures near absolute zero, however, and the absence of
much temperature dependence of ¢/M in this range
indicates that the observed creep is not associated with
a thermally activated process.®* Glen® has suggested
that the actual process involves quantum mechanical
tunneling of dislocations through energy barriers which
impede their motion and Mott* has given this sug-
gestion a theoretical treatment.

Thus far, although it has been shown that experi-
mental creep results for the linear region of strains may
be associated with a distribution of relaxation times
(actually retardation times), nothing has been said
about microscopic processes which might lead to such
a distribution. Because of the complexity of the effects
observed, only a qualitative discussion is warranted at
this time. Since some discussion of this matter for
rubbers and polymers has been given,’”¢ the present
discussion will be restricted to other materials such as
metals and rocks.

Although the results of steady-state internal friction
measurements and creep experiments on the same
material at the same temperature should be inter-
related in the linear range as shown herein and as found
experimentally by Ké&3 separate theories of internal
friction and transient creep have been developed in the
last few years. This is at least in part because the creep
theories are usually intended to apply at higher strains
than the theories of internal friction. In the range to
which the present results apply, the same time-
independent distribution-of-relaxation-times function
should be involved in both effects.

All creep theories which have been applied in the
temperature range appreciably above absolute zero
where tunneling effects are apparently no longer of
importance have made use of Becker’s’ idea that
thermal fluctuations are necessary to produce flow.*
The widespread applicability of the logarithmic and
power laws of creep to such diverse materials as fibers,
polymers, metals, and rocks suggests, as Cottrell*
has pointed out, that there are general features involved
in creep common to all or most solids. A number of
thermal activation theories of creep which include the

% J. W. Glen, Phil. Mag. 1, 400 (1956).

“H. M. Rosenberg, Progress in Metal Physics, edited by B.
Ch;.ér;lers and R. King (Pergamon Press, New York, 1958), Vol. 7,
p. 339.

4 N. F. Mott, Phil. Mag. 1, 568 (1956).

46 Reference 32, pp. 408-413.

(]4972162)' Becker, Phys. Z. 26, 919 (1925); Z. tech. Physik 7, 547

48 A..H. Cottrell, J. Mech. and Phys. Solids 1, 53 (1952).
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combined action of stress and thermal vibrations have
been proposed.!?:?8:4248-5 These theories generally in-
volve energy barriers separating distinct states of the
system and transitions between such states of such
entities as molecules, molecular groups, flow units, and
dislocations or dislocation loops. Several of these creep
theories lead to simple or modified logarithmic or
power laws.

The dislocation model of internal friction due to
Koehler® and Granato and Liicke® % treats viscous
damping of dislocation lengths or loops which are
anchored at pinning points and vibrate under applied
stress. Similarly, dislocation theories of creep in metals,
associated with the work of Orowan,-%! Cottrell,*8 and
Mott%:% involve the movement and trapping by
obstacles of dislocations already present or generated
in the material. The obstacles may be other dislocations,
foreign atoms, Peierls’s hills, nodes of the dislocation
network, etc.,*® and dislocations may be released from
them by thermal vibrations and stress. It is clear that
even ignoring grain boundary motion effects there are
more than sufficient different interactions and processes
likely to occur in a real material to account for a distri-
bution of relaxation times. For example, there may be,
among others, a distribution of dislocation loop
lengths,5% of activation energies or energy levels
between different states, of pinning strength, and of
different surroundings of different dislocation loops.

In Mott’s latest theory,® which can lead to loga-
rithmic time dependence, the slowing down of creep
with time is ascribed to the increasing difficulty of
release of dislocations from obstacles as work hardening
progresses. This is a partly irreversible process and so
cannot be completely related to the reversible linear
processes associated with the very small strains con-
sidered in the present work. Consequently, Mott’s
theory, in common with most of the other thermal-
activation theories already cited, does not lead to a
linear stress-strain relation. Creep slows down on the
present model because there is a lower and lower
density of relaxing units which have relaxation times
of the order of the time of measurement as this increases
beyond {~ 7. Although the linear, reversible character
of the present theory requires that the distribution of
relaxation times appropriate at a given temperature
be a time-independent property of the material, this

“ E. Orowan, J. West Scot. Iron Steel Inst. 54, 45 (1946-47).

®N. F. Mott and F. R. N. Nabarro, Report of Conference on
Strength of Solids (Physical Society, London, 1948), p. 1.

5t E. Orowan, Imperfections in Nearly Perfect Crystals, edited by
W.lsgliock!ey et al. (John Wiley & Sons, Inc., New York, 1952),

P .

2 N. F. Mott, Phil. Mag. 44, 742 (1953).

% A. J. Kennedy, J. Mech. and Phys. Solids 1, 172 (1953).

% J. S. Koehler, Imperfections in Nearly Perfect Crystals, edited
by 1‘3’7 Shockley et al. (John Wiley & Sons, Inc., New York, 1952),
p. 197.

% A. Granato and K. Liicke, J. Appl. Phys. 27, 583, 789 (1956).

56 K. Liicke and A. Granato, Dislocations and Mechanical
Properties of Crystals, edited by J. Fisher et al. (John Wiley & Sons,
Inc., New York, 1957), p. 425.
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does not preclude application of the present results to
creep measurements on a previously work-hardened
material ; it merely restricts the theory to such small
deformations that additional work hardening or similar
irreversible changes are unimportant during creep or
during the transmission of a stress wave.

Both the theories of Mott® and of Wyatt® lead to
direct dependence on absolute temperature of the
quantity equivalent to the present oog/M, in approxi-
mate agreement with Wyatt’s experimental results.
Note that Eq. (36) shows that g is connected with the
value of ¥ (=), an intrinsic property of the material
at a given temperature, since Y(e) is itself dependent
on the relaxation time distribution.

Although Mott’s work-hardening theory is not closely
applicable to the present model, it is worth mentioning
that it yields an analytic expression for a time constant
such as the 7o which appears, for example, in (4).
Mott® has shown that reasonable values for the
microscopic parameters determining 7o lead to a value
for it in order of magnitude agreement with the figure
of 1 sec found experimentally by Davis and Thompson®
for a precipitation-hardened Cu-Ag alloy at room
temperature. As we shall see in the next part, the figure
of ro~1 sec is also in fair agreement with the 7o ob-
tained by fitting the present theory to 1/Q results
associated with long-period phenomena.

The magnitude of 7o is a critical factor in the present
theory because it determines the frequency range
where 1/Q changes from being roughly constant to
decreasing as w1, It also determines the time at which
the creep rate first deviates from its initial value and
becomes time dependent. Unfortunately, most creep
measurements have not been carried out to sufficiently
short times or analyzed properly to give good values
of 7o. Lomnitz’s measurements for creep in rock® start
at about 30 sec after the application of shear stress,
yet he derives a value of 7o (his a™) of about 107* sec.
Since his results are well fitted in the range of measure-
ment by simple logarithmic time dependence, a value
of 7o far less than the shortest time of measurement
cannot be extracted from them. It can only be concluded
from his work that 7o for rocks is less than 30 sec.
Wyatt’s creep measurements on pure metals® begin
at about 2 sec and allow us to infer that 7o is likely to
be less than this for such materials.

Whenever creep measurements for <z, can be fitted
by a form like Eq. (2) with the expression () used for
¥(1), 7o can probably be obtained most accurately by
analyzing de/di results. For >0 we may write

de/di= (og/Mro)[ 1+ (t/70) . (47)

Let us denote by B the quantity (cog/Mro)"/" V.
Then (47) may be rewritten as

(de/di) =B+ (B/ o)t (47

If now the quantity on the left is plotted versus ¢ for
various values of » near and including zero, one such

ROSS MACDONALD

value of » should lead to the best straight line, from
which 74, », and B can be obtained. A somewhat
similar procedure was used by Davis and Thompson®
to obtain the value of ¢ already quoted, although they
did not fit their data to a modified logarithmic form
like that in Eq. (4). Further discussion will be given
later of the quantities », ¢, and 7o which appear in the
present work. -

The time constant 7., cannot be determined directly
unless the data can be extended to the region W<a or
2 7. We have found no data pertaining to sufficiently
long times or low frequencies that these conditions are
reached. In addition, without data in this region to
allow more precise definition of the form of the relaxa-
tion spectrum at these long relaxation times, the present
specific modification of the distribution-of-relaxation-
times function is somewhat speculative. Nevertheless,
some such modification is necessary to make the theory
describe a physically realizable system. If the present
distribution of relaxation times is accepted in lieu of
better information, ., is well defined theoretically and
an estimate of its magnitude can be obtained from the
ratio of final to initial strain predicted by the present
theory when all the parameters involved are well
known. Jeffreys? has somewhat arbitrarily taken a
value of 1.1 for this ratio for the earth and states that
there is good evidence that it is less than 1.6. The
present results yield

e(=)/e(0)= 14y (=), (48)

where Y() is given by (36) or (37). If we take the
approximate values »=0, ¢=107% and 7,=8.3 sec,
which are found in the next part, and use 1.1 for the
above ratio, r, is about 1.4 days, manifestly too short.
However, for the value ¢g=10"2 used here, 7, increases
by € for each 0.1 increase in e(®)/e(0) when v=0.
Therefore, if this ratio is taken to be 1.4, 7 is about
4X 10 yr, a sufficiently long time. The quantity .,
decreases as v increases. For e(%)/e(0)=1.1, one finds
To~0.3 day for »=0.01 and 2.1 hr for »=0.04. When
the ratio is 1.4, 7,~2.3X10” yr and 1.3X10? yr for
»=0.01 and 0.04, respectively. The ¢¢~* term in (36),
which arises from taking G(7)>0 for 0<2< ¢, has only
a relatively small effect on the above values. Because
of the strong dependence of 7, on the uncertain quanti-
ties €(=)/e(0), ¢, and », we can only conclude that
within their present limits of uncertainty they can
indeed lead to a large enough =, value to have escaped
direct observation.

Long-Period Phenomena

Transient creep is a time-domain phenomenon
concerned with strain and its rate of change. We shall
now pass on to small-amplitude frequency-domain
measurements associated with vibration, oscillation,

8 M, Davis and N, Thompson, Proc. Phys. Soc. (London) B63,
847 (1950).
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and wave motion. Disagreement between results
obtained by transient and frequency response methods
on the same material may indicate that the range of
linearity has been exceeded. Such a conclusion is only
justified, however, provided that the time span in the
transient measurements is consonant with the range
of periods in the frequency response measurements.
The geophysical results discussed in this section are
roughly consonant in this way only with usual creep
measurements.

In Fig. 5, 1/Q values primarily pertaining to wave
phenomena in the earth are plotted vs angular fre-
quency. Data for body waves have been indicated with
an open symbol while a solid symbol or line has been
used for data pertaining to surface and mantle waves.
When Q is large, Eq. (20) shows that 1/Q and the at-
tenuation factor « are related by

1/0=atyV/x, (49)

where ¢ is the period and V the phase velocity of the
waves. The logarithmic decrement & is given approxi-
mately by 7/Q and the time lag, or time of retardation,
by 1/wQ. The data shown on Fig. 5 have been obtained
from a variety of sources,’* % and it is surprising
that they are as consistent as indicated. For con-
venience, the type of phenomenon considered has been
listed after each of references 58 through 69. For the
data shown as horizontal lines, 1/Q was roughly con-
stant over the limits indicated. The S-wave point which
includes an arrow represents a lower limit. The extremes
of the vertical lines indicate points obtained from meas-
urements associated with two different earthquakes.

In the region where 1/Q decreases as w1, Eq. (49)
indicates that aV is constant. Since Q is high in this
region, dispersion of the velocity will be negligible and
a will be essentially frequency independent, in agree-
ment with Eq. (46). There is sufficient data on Fig. 5
to allow theoretical curves to be fitted approximately.
The results of such fitting are indicated by the solid
lines. The values used for the theoretical lines were
¢=10"% and 7¢=8.5 sec. Since the beginning of a bend

% B, Gutenberg, Bull. Seismol. Soc. Am. 48, 269 (1958). P, PP,
PKP, S waves.

8 F. Press, Science 124, 1204 (1956). S waves.

% B. Gutenberg, Bull. Seismol, Soc. Am. 35, 3 (1945). Rayleigh
waves.

® M. Ewing and F. Press, Bull. Seismol. Soc. Am. 44, 127
(1954). Mantle Rayleigh waves.

2 M. Ewing and F. Press, Bull. Seismol. Soc. Am. 44, 471
(1954). Mantle Rayleigh waves.

% H. Benioff, F. Press, and S. Smith, J. Geophys. Research 66,
605 (1961). Free, spheroidal oscillations of the earth.

% M. Bath, Geofis. pura e appl. 41, 91 (1958). Mantle Rayleigh
waves.,

Y. Satd, Bull. Seismol. Soc. Am. 48, 231 (1958). Gutenberg
waves (mantle Love waves).

% B. Gutenberg, Phys. Z. 25, 377 (1924). Love waves.

5 H. Jefireys, The Earth (Cambridge University Press, Cam-
bridge, England, 1959), 4th ed., p. 255.

#W. H. Munk and G. J. F. MacDonald, Tke Rotation of the
Earth (Cambridge University Press, Cambridge, England, 1960).
Variation of latitude.

% P. Fellgett, work in progress: quoted in reference 68. Varia-
tion of latitude.
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F16. 5. 1/Q vs angular frequency  for »=0, 0.01, and 0.04;
a=0; 79=8.5 sec; and ¢=0.01. A variety of experimental points
are also shown.

can be observed in the data for longer periods, the
estimate for 7o is probably accurate to within 5097
or less.

The absence of much data at very long periods
makes the determination of ¢, and even more so », very
uncertain. A damping value for the semi-diurnal earth
tides has not been plotted because of scatter arising
from the effects of ocean loading. Data obtained from
mid-continental stations suggests™ that the appropriate
1/Q with such loading minimized may be as low as
5X107% The two values of 1/Q obtained from the
14-month variation of latitude of the earth are quite
uncertain® 7 and represent over-all system values which
include interface dissipation, especially that at the
boundary between the core and the mantle and that
between the mantle and the oceans.” Without these
dissipations, the over-all value of 1/Q might be 5X 103
or smaller. A small negative value of » would lead to a
curve falling below that for »=0 in Fig. 5 and might be
more appropriate in this case.

It will be noted from Fig. 5 that the 1/Q values for
the body waves which travel in both core and mantle
are consistently lower than those that are restricted
to the mantle and surface alone. At least part of such a
difference might arise from the higher Q to be expected
for material under high pressure in the core. In addition,
the uncertain and varying effects of scattering arising
from inhomogeneities along the paths of the various
waves involved in Fig. 5 have not been estimated and
corrected for. Further, no account has been taken of the
fact that the 1/Q values for Rayleigh, shear, and
compressional waves of the same period traveling in

the same medium are in general different but related.

" G. J. F. MacDonald (private communication).
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Here, the situation is complicated by unequal periods
for the waves and, in view of the uncertainty of the data
and even uncertainty in the applicability of the present
theory to the raw data presented, it has not been felt
worthwhile to try to take the above effect into account.

It is a hazardous extrapolation to expect the present
theory to describe loss in the core, mantle, and crust
simultaneously in a very accurate fashion.” Therefore,
the theoretical fitting shown in Fig. 5 can only be
expected to give order of magnitude values. It is
suggestive, however, that the present 7o value is
reasonably consistent with the results of creep measure-
ments on metals and rocks already mentioned. If
sufficient accurate wave transmission data for the
earth were available, especially at long periods, it
might be preferable to analyze it into two (or more)
dispersion regions, a high-Q one pertaining to the
average core, and a lower-(J, perhaps half as large, for
the average mantle. The present theoretical results
could be applied separately to these regions with
different values of 7o, ¢, and possibly » for each. An
over-all response could then be obtained by addition
of 1/Q values for the separate regions.

The present rough curve fitting and previously
considered creep data both suggest that the most likely
value of » for rocks and metals in the small strain range
is near zero and is almost certainly less than 0.03.
Jeffreys® has derived an approximate value of »=0.17
using (5) and assuming, on the basis of Lomnitz’s
erroneous value 7¢7'= 103, that W< for seismic waves.
The data and curve fitting of Fig. 5 show that this
assumption is unwarranted. Furthermore, Fig. 2
indicates that the combination of a sufficiently high Q
to agree with experiment and an appreciable region
of frequency independence of 1/Q is unrealizable for »
as large as 0.17.

Short-Period Phenomena

Acoustic, seismological, and vibrational determi-
nations of energy loss in solids are generally carried
out under conditions which involve very small strains.
Therefore, the present linear theory should be particu-
larly applicable to the analysis of such amplitude-
independent measurements. A variety of measurements
have recently been summarized by Knopoff and Mac-
Donald” who conclude that 1/Q for inorganic, non-
ferromagnetic materials is very nearly frequency-
independent over the range from 10~* to 107 cps, a
conclusion in some apparent disagreement at the lower
end with the data of Fig. 5. No single material has been
measured at all frequencies of this entire range, how-
ever. The magnitude of 1/Q usually found is of the
order of 102 to 103, although it may be even smaller.

"B, Gutenberg, Physics of the Eartk’s Interior (Academic
Press, Inc., New York, 1959), p. 191.

2 L., Knopoff and G. J. . MacDonald, Revs. Modern Phys.
30, 1178 (1958).
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Other internal friction data discussed in an article by
Niblett and Wilks,™ which also includes a discussion
of mechanisms leading to internal friction, show some
frequency dependence of 1/Q (or logarithmic decrement)
over small frequency ranges, but the majority of data
leads to very weak or absent frequency dependence over
a wide frequency range. Kolsky™ has presented data
on several non-metallic materials which also show
negligible frequency dependence.

Measurements on a number of solids over a limited
frequency range indicate that the attenuation factor is
rather closely proportional to frequency. Equation
{49) cannot be used to establish the frequency in-
dependence of 1/Q from such results unless the phase
velocity is shown to be frequency-independent. Equa-
tions (44) and (45) of the present theory indicate that
for aKW<1 and 0 <y, the frequency dependence of
a will be very difficult to distinguish experimentally
from direct proportionality. Alternatively, when »=0
and Q is large, Egs. (17) and (43) indicate that « is
given quite closely for a<<W<<1 by

o= (W/ 27V JHW)[1+T (W) 1. (30)
Here, @ may increase slightly more rapidly than direct
frequency proportionality over an appreciable range,
but the deviation will be difficult to detect experi-
mentally.

Of especial interest are stress attenuation results
obtained on granite and other surface rocks. The
measurements of Bruckshaw and Mahanta™ indicate
that 1/Q is frequency independent for several such
materials from 40-120 cps. Others™ 778 have found
evidence of such frequency independence up to 10
Mcps and down to lower seismic frequencies. These
results seem difficult to reconcile with those of Fig. 5
at first. It should be noted, however, that except for
recent results on Solenhofen limestone™ there are no
accurate 1/Q data available for rocks in the frequency
region from about 1 cps to 20 or 30 cps. The above
discrepancy may be reconciled in one of two ways.
First, the decrease in 1/Q shown at the right in Fig. 5
may not arise primarily from the present loss mechanism
but may appear because of the increase in Q with in-
creasing pressure and even from a possible decrease in
scattering effects at shorter wavelengths. Thus, the
short-period body waves which penetrate deeper into

%D, H. Niblett and J. Wilks, Advances in Phys. 9, 1 (1960).
" H. Kolsky, Stress Wave Propogation in Materials, edited by
N. Davids (Interscience Publishers, Inc., New York, 1960),

.59.
P J. Mc. Bruckshaw and P, C. Mahanta, Petroleum 17, 14
1954).
( 76 F. Birch and D. Bancroft, Bull. Seismol. Soc. Am, 28, 243
(1938). ’

77 Ve. V. Karus and I. P. Passechnik, Akad. Nauk S.8.S.R,,
Izvest. Ser. Geofiz. 6, 514 (1954).

78 1,. Peselnick and L. Zietz, Geophysics 24, 285 (1959).

"1, Peselnick and W. F. Outerbridge, T. Geophys. Research
66, 581 (1961).
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the carth would have most of their path lengths in
high-Q core material. In this case, the hypothesis of
frequency-independence of 1/Q for many materials at
constant pressure and temperature over the range from
1072 or 107! to 107 cps may be accepted, although even
so the lower end of the range seems somewhat difficult
to reconcile with creep results.

Secondly, if pressure and scattering effects are ac-
tually unimportant and the present model is assumed
to apply to the lower frequencies such as those cov-
ered by Fig. 5 with 7o~10 sec, new loss mechanisms
will begin to be important at higher frequencies.
Somewhere in the region of 1 to 20 cps, the 1/Q decrease
shown in Fig. 5 would then cease and either 1/Q would
remain constant at a new lower value or it would, more
likely, increase up to 1073 to 1072 again and then
remain constant to very high frequencies. In either
case, this new dispersion region might again be well
described by a linear loss mechanism of the present
type with values of 7, and 7, different from those
applicable to the lower dispersion region, and values of ¢
and » either the same or different. It is known that 1/Q
is considerably less in single crystals than in poly-
crystalline aggregates of the same material. It is
possible that the higher-frequency dispersion region
begins to become important in polycrystalline material
when the wavelength is short enough that theboundaries
between individual grains and crystallites can begin to
play an important role in energy dissipation.?® Under
these conditions, one would naturally expect a distri-
bution of relaxation times. At the longer wavelengths
of Fig. 5, grain-boundary effects and degree of com-
paction might be expected to be less important.
Knopofi and MacDonald* have considered various
models for acoustic loss in solids and conclude that
microscopic scattering effects will not become important
until very high frequencies are reached. The very
recent results of Peselnick and Outerbridge™ on internal
friction in Solenhofen limestone indicate a nearly
constant 1/Q from about 4 cps up to the limit of
acoustic frequencies or above. For this material at least
it is therefore likely that there is only one dispersion
region rather than two separate ones with a transition
region in the 1~10 cps frequency range.

If the hypothesis of separate upper and lower dis-
persion regions is accepted, the present analysis can
also explain the experimental constancy of 1/Q to very
high frequencies and the nearly direct proportionality
of a to frequency. In the region from perhaps w=10? to
108, 1/Q remains at least roughly constant and of the
order of 1073 to 10~2. When »=0, Egs. (19) and (43)
show that 1/Q~q/2, thus setting limits on ¢. Alter-
natively, if 0<»<1, Eq. (41) requires »<1 for es-
sentially frequency independent 1/Q coupled with a
sufficiently large value of Q. If W=a at =107, the r,,
for this dispersion region will be 102 sec. Further, if
W=1 at w=2103, 7, will be 102 sec. These results are
predicated on sufficient separation of the low- and high-
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frequency dispersion regions that they can be repre-
sented by two essentially nonoverlapping distributions
of relaxation times. If overlapping is considerable, a
single relaxation distribution function must be used
which covers both dispersion regions, and the distinction
between the 7, for the lower region and the 7, for the
upper region will become blurred or disappear. If the
decrease in 1/Q shown in Fig. 5 is largely a pressure
or boundary-layer artifact associated with mantle and
core wave paths, the distinction disappears completely
and small amplitude loss in a given material such as a
metal or rock should be describable by the present
theory using a 7, between 10? and 10° yr and a 74 of
10~® sec or less, a remarkably wide range of times and
wide distribution of relaxation times.

The usual theory of amplitude-independent internal
friction losses 34-5 leads to an expression for 1/Q which
is proportional to the mean length of a vibrating
dislocation loop raised to the fourth power and directly
proportional to frequency for frequencies appreciably
below 100-1000 Mcps. As the foregoing discussion
indicates, such frequency dependence is in poor agree-
ment with most experiments. Wilks® has recently
suggested, however, that the L* term may be an inverse
function of frequency. Such dependence of L will make
the over-all frequency dependence of 1/Q less strong
and may even lead to a decrease in internal friction at
high frequencies. Wilks’ argument is that the effective
length of a loop will decrease with frequency for
frequencies appreciably greater than the inverse of the
average time required for the unpinning of a dislocation
from an impurity atom. Although Wilks relates this
time to an activation energy which may depend on the
nature of the impurity and the distance to adjacent
pinning points, he does not explicitly consider a distri-
bution of times and activation energies. A distribution
of activation energies is certainly likely and can lead to
a distribution of relaxation times and, equivalently, a
dependence of effective loop length on frequency.

The problem of explaining a dissipation factor which
is nearly independent of frequency over many decades
also arises in the field of dielectrics. A number of authors
have attacked the dielectric problem by also considering
a distribution of activation energies.8-% For example,
one may often write

=14 exp(E/kT), (51)

where E is an effective activation energy for the process
and may be discontinuously or continuously distributed
over a finite range from E, to E,.

If K(E)AE is the density of relaxation times having
activation energies in the range dE, then K(E)dE
=Gi(7)dr. Since K(E) should be a temperature-

% J. Wilks, Phil. Mag. 4, 1379 (1959).

(1;'413%. Gevers and F. K. Du Pré, Trans. Faraday Soc. A42, 47

% C.'G. Garton, Trans. Faraday Soc. Ad2, 56 (1956).

8 H. Frohlich, Theory of Dielectrics (Clarendon Press, Oxford,
England, 1958), 2nd ed., pp. 92-98.
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independent, time-invariant property of the system,
G1(7)(d7/dE) should also be temperature independent.
This requirement imposes restrictions on the form of
a distribution-of-relaxation-times function which can be
used to describe an activated process. In the present
case when G(z) is given by Eqgs. (28) or (33), these
restrictions cannot be met exactly, primarily because
of the presence of the ¢ term. Note that the G(z)
of Eq. (33) is still physically realizable, however, when
the distribution of relaxation times considered does not
arise solely from a distribution of activation energies.
The actual distribution function of Eq. (28) multiplied
by 27! is, in fact, of the form of a Poisson distribution,
a distribution commonly met in nature. For example,
such a distribution (with »<0 and integral) has been
found to describe the size statistics of polycrystalline
aggregates under some conditions.3

If the activation energy range extends from E, to E,,
the smallest and largest relaxation times are 7,
=1, exp(E/RT) and 7=r1,exp(E/RT). If 7, is
identified with the present 7., then the minimum value
of z is ¢ and G(3)=0 for z<a, a possibility already
mentioned. The quantity r, may be set equal to 7o
without appreciably changing the transient or frequency
response results already considered in the range of
primary interest. Then the maximum value of z is
unity. One will still find a wide frequency region where
1/Q will be constant and 1/Q will still decrease as W~
for W>>1. Note that even if the intrinsic vibration
time 7, is very small, the time r,=7¢ may be made a
second or longer by taking E;, the minimum height of a
potential barrier, sufficiently large. If E; is taken zero
or proportional to temperature, 7o will be temperature
independent.

When r is given by Eq. (51) and G(3) is expressed
by (28) in the range a<z<1 and is zero outside this
range, it turns out that the resulting K(E) may be
made very nearly temperature independent when »<1
by taking » and ¢ both proportional to absolute tem-
perature, results in at least qualitative agreement with
experiment. The temperature dependence of the ¢*
term which appears in K (E) cannot be removed by the
above choices but such dependence will be quite small
for the present choice of 7¢=7,. Distribution functions

8 J, R. Macdonald (submitted to J. Chem. Phys.).
8 P, J. Gellings, Appl. Sci. Research A10, 165 (1961).
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which are entirely consistent with thermally activated
processes having a distribution of activation energies
and which can be related to both dielectric and internal
friction behavior will be discussed elsewhere.%

The present theory is linear in that superposition
applies, and it involves a linear dependence of strain
on stress at a given time even though the creep function
itself may be a nonlinear function of time, such as that
in Eq. (5). Knopoff and MacDonald™ have stated,
however, that no model of dissipation in solids which
is based on a linear stress-strain relation can account
for the frequency independence of 1/Q observed for
many materials. This conclusion is based on an approxi-
mate treatment of a lumped-parameter model of a
linear solid. It has led them, as already mentioned, to
propose a nonlinear theory which leads to such constancy
of 1/Q in the range where 1/( is amplitude independent.
The present work, based on a continuously distributed
model, shows that a linear theory can also lead to a
1/Q which is virtually frequency independent over a
wide range of frequencies.

Two of the particular virtues of the present approach
are that @ increases at each end of the constant 1/Q
range. Such increase causes the effects of a given
dispersion mechanism to be of importance in a limited,
but possibly very wide, frequency range only. Outside
this range, other dispersion mechanisms may come into
play which themselves may possibly be describable by a
theory of the present type with different material
constants. Most other theories®® ™™ lead to (s which
decrease indefinitely at high frequencies and often at
low frequencies as well, precluding the simple super-
position of similar solutions to cover several different
dispersion regions in the same material.
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