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A theory of the double layer in uni-univalent unadsorbed elec-
trolytes is developed and used to analyze Grahame’s experimental
measurements of differential capacitance for NaF in water at 0°
to 85°C and KF in methanol at 25°C. Excellent agreement with
experiment is obtained except in the region of strong anodic po-
larization; this disagreement is tentatively ascribed to specific
adsorption of anions, an effect not quantitatively considered in
the present work. Although the quantities calculated herein re-
late to the entire double layer as, of course, do Grahame’s data,
the Gouy-Chapman theory of the diffuse part of the double layer
(without dielectric saturation) is adequate in the present situa-
tion for all concentrations considered and has been used through-
out. Consequently, the degree of agreement between theory and
experiment found reflects primarily upon the applicability of the
present theory of the inner layer. In the absence of specific ad-
sorption this region is taken to be a hexagonally close-packed
charge-free monolayer of solvent, physically adsorbed on the
mercury electrode by dipole image forces. Adsorption anisotropy
can lead to some dielectric saturation in the inner layer even at the
electrocapillary maximum, the point of zero electrode charge.
Neglecting association in the monolayer, the inner-layer dielectric
constant and its dielectric saturation properties are calculated
under three situations—where dipole image contributions are
neglected, where the monolayer dipoles are imaged in the mercury

electrode only, and where they are additionally imaged in an
equipotential plane on the other side of the layer. The last case
leads to an infinite set of images and to infinite series which are
summed. These treatments all lead to much smaller dielectric
constants and saturation constants than are found for bulk sol-
vent. Comparison with values of these constants obtained from
fitting the theory to the experimental data using a digital com-
puter yields reasonably close agreement. New equations for the
dependence of inner-layer thickness, volume, and dielectric con-
stant on pressure and electric field, are derived and applied. The
electrostatic pressure in this region is shown to consist of a capaci-
tor-plate compressive term and an electrostrictive term, the latter
originating only from the distortional and not the orientational
polarization of the inner layer. As with the dielectric properties,
the compressibility of the inner region found from curve fitting
is of the right order of magnitude for both water and methanol
solvents. The hump which occurs in water at low temperatures
and small anodic polarization is attributed to the interplay of
specific adsorption and dielectric saturation. Finally, it is pointed
out that the usual method of separation of the inner-layer capaci-
tance from the total differential capacitance by assuming the
former to be in series with the diffuse-layer capacitance is unjus-
tified in regions of appreciable specific adsorption, where the inner
layer is no longer charge free.

INTRODUCTION

N 1954, one of the present authors published a
theoretical treatment of the double layer in un-
adsorbed electrolytes' and analyzed the NaF dif-
ferential capacitance measurements of Grahame? for
cathodic polarization at 25°C on the basis of this
theory.! This work (hereafter referred to as I) was the
first attempt to analyze the behavior of the inner, or
charge-iree, region of the double layer in terms of its
averaged properties. Since 1954, several inadequacies
of the earlier theory have become apparent; Grahame?
has obtained considerable further data on NaF for a
range of temperatures extending from 0° to 85°C,
and a digital computer for convenient fitting of theory
to experiment has become available. Therefore, the time
seemed ripe to present an improved version of the early
work at the American Chemical Society Symposium in
Commemoration of David C. Grahame.* The present
paper represents a final and more complete version of
the work presented at this symposium.
The double layer with which we shall be concerned is
assumed, in the absence of specific adsorption, to
consist of the following parts. First, there is a space-

1 J. R. Macdonald, J. Chem. Phys. 22, 1857 (1954).

2D. C. Grahame, J. Am. Chem. Soc. 76, 4819 (1954).

3D. C. Grahame, J. Am. Chem. Soc. 79, 2093 (1957).

4 J. R. Macdonald, Symposium in Commemoration of David C.
Grahame, 138th Meeting of the American Chemical Society, New
York, New York, September 14, 1960. Abstracts of papers, p. 14-1.

charge region in the metallic electrode®™ 0 analogous to
the usual diffuse double layer of electrolyte theory.
The effective thickness of this layer is so small for a
good conductor such as mercury that its effect within
the metal may be almost completely neglected. Next
follows the inner, charge-free layer between the elec-
trode and the electrolyte. Finally comes the diffuse
double layer, made up of positive and negative ions
and extending into the bulk of the electrolyte.

The basic equations of the simple diffuse double
layer were first given by Gouy,* Chapman,? Fowler,?
and Miiller.* Independent derivations are found in the
papers of Macdonald and Brachman® and of Gold.!®
The final results have been given in two different
mathematical forms, the equivalence of which has not

5 J. Bardeen, Phys. Rev. 49, 653 (1936).

¢ H. Y. Fan, Phys. Rev. 62, 388 (1942).

7 C. Herring and M. H. Nichols, Revs. Modern Phys. 21, 185
(1949). The work to 1948 is reviewed in this article.

8 K. Huang and G. Wyllie, Proc. Phys. Soc. (London) A62,
180 (1949).

8 R, Stratton, Phil. Mag. 44, 1236 (1953).
(1;‘55). Furth and E. Morris, Proc. Phys. Soc. (London) 73, 869

11 G. Gouy, J. Physique 9, 457 (1910).

2D. L. Chapman, Phil. Mag. 25, 475 (1913).

B R. H. Fowler, Statistical Mechanics (Cambridge University
Press, London, England, 1929), 1st ed., pp. 282-283.
. ;‘1 gS ;Miiller, Cold Spring Harbor Symposium Quant. Biol. 1,

5 J. R. Macdonald and M. K. Brachman, J. Chem. Phys. 22,
1314 (1954).

18 L. Gold, J. Elect. and Control 5, 427 (1958).
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always been recognized.'” Some of the deficiencies of
simple diffuse double-layer theory for high ionic
concentrations recently have been re-examined!® and
improved treatments of the problem!®® have been
given. The results of this newer work are not needed
in the present paper because except for regions of low
ionic concentrations and low potential difference
across the diffuse layer, where the simple theory is
quite adequate, the inner layer dominates the
capacitance of the series combination.

Grahame’s differential capacitance results were
obtained with a dropping mercury electrode. Since a
very fine capillary tube was used for the mercury, it
may be considered a spherical drop during the measure-
ment. We have therefore carried out appropriate parts
of the theory for a double layer surrounding a con-
ducting sphere rather than for the usual plane electrode.
Some of the results may be pertinent to the problem of
hydration around a single ion or colloid particle.? For
the present problem, where the ratio of sphere radius
to inner-layer thickness is greater than 10°, the spherical
solution reduces to that of the plane.

As in I, we are concerned with a system which we
will describe by its averaged macroscopic properties
such as dielectric constant and compressibility.??* We
discuss the capacitance relations in the double layer
and consider the effects of dielectric saturation and
compression in the inner layer. In addition, we also
consider the influence of specific adsorption, electro-
striction, and a possible ‘‘natural” electric field at the
electrode, assumed perfectly polarizable.

BASIC CAPACITANCE RELATIONS

As long as the inner layer remains charge free, the
charge® ¢ on the mercury electrode must equal in
magnitude the total space charge in the diffuse layer.
The differential capacitance of the double layer Cyr is
then (Cy '+ Cs1)~, where the differential capacitance
of the inner layer C; and that of the diffuse layer C,

17 B, Breyer, Revs. Pure and Appl. Chem. 6, 249 (1956).

( 18 H) S. Frank and P. T. Thompson, J. Chem. Phys. 31, 1086
1959).

13 M. J. Sparnaay, Rec. trav. chim. 77, 872 (1958).

( % H) Brodowsky and H. Strehlow, Z. Electrochem. 63, 262
1939).

2L Work in progress by the present authors.

2 Superscript letters refer to material supplementary to this
article which has been deposited with the ADI Auxiliary Publica-
tions Project, Photoduplication Service, Library of Congress,
Washington 25, D. C. A copy may be secured by citing the Docu-
ment number. Advance payment is required. Make checks or
money orders payable to: Chief, Photoduplication Service, Library
of Congress. Document number and prices may be obtained from
the authors at the by-line address.

28 For convenience, quantities referred to as charge and capaci-
tance will be understood to mean charge and capacitance per unit
area where pertinent.

24 A subscript 1 will be used when necessary to denote quantities
defined in or pertaining to the inner layer, while a subscript 2 will
be employed for diffuse layer quantities. For parameters such as
electric field which vary with distance in the diffuse layer, the 2
designates the value in the diffuse layer at the boundary with the
inner layer. Unless explicitly indicated, all reference to capaci-
tance means differential not integral or static capacitance.
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are in series. When the inner region is not charge free,
a modification must be made in this equation which is
discussed later. In the quantitative parts of the analysis
which follows, we usually ignore specific adsorption.
In addition, since the effect on Cr of dielectric satura-
tion by the applied field in the diffuse layer has been
shown® to be small, it is also ignored.

In the absence of dielectric saturation, C: may be
written??” as the following function of the field Es:

Co= (e/4r Lp)[1+ (A Ex*)* = 8.85417X 10~%(es/ L)
OHGEN R (pf/em?), (D

where Ey*=(eLp/kT)E;, Lp is the Debye length,*
and e is the static dielectric constant in the bulk of the
solution. Numerical values such as that in (1) have
been calculated from values of the fundamental
constants given in references 28 and 29.

We shall need the potential drop V; across the diffuse
layer, taking the far bulk of the solution to be at zero
potential. [This choice of the reference potential is
equivalent to referring all potentials to the electro-
capillary maximum (ecm) potential.] We may write
Vs in terms of E; to give,

| Vol =(2kT/e) In{] 3 E2* | +[1-+ (GE*)" 1}

=1.7234X10~T In{] 15o* | +[1+ GENTF (v).

(2)

Since it is likely that the charge-free region is made
up of a single monolayer of solvent, hexagonally closed
packed on the electrode, we shall describe this layer by
the following averaged properties: thickness d, static
dielectric constant e, differential dielectric constant i,
compressibility 8, and Poisson’s ratio ¢. In the absence
of adsorption, Di=¢ F1=4mg is constant and, as will
be shown, ¢ is not proportional to E,~!; therefore, ¢
and E; must be separately constant throughout the
inner layer®® Then, Vi= Fid, where d may depend
upon E; if the layer is compressible. The total potential
drop across the double layer is Vo=V 4 V..

The boundary condition at the interface between the
charge-free region and the diffuse layer is Ez=e FE/e,
giving F,, and hence C; and V,, in terms of £i. In
calculating Cj, account must be taken of possible
variation of inner layer thickness with electric field. Let
us take do to be the thickness for £;=0 and define the

% 1. C. Grahame, J. Chem. Phys. 18, 903 (1950).

2% . C. Grahame, Chem. Revs. 41, 441 (1947).

27 J. R. Macdonald, J. Chem. Phys. 22, 1317 (1954).

28 E, R. Cohen, J. W. M. DuMond, T. W, Layton, and J. S.
Rollett, Revs. Modern Phys. 27, 363 (1955).

2 J, A. Bearden and J. S. Thomsen, Am. J. Phys. 27, 569
(1959).

® Compare with N. F. Mott and R. J. Watts-Tobin, Electro-
chim Acta 4, 79 (1961). We are grateful to these authors for the
chance to see advance copies of this manuscript, which treats
much the same problem here considered but from a discrete-
charge point of view and includes some treatment of specific
adsorption.

Downloaded 24 Jul 2007 to 152.2.62.11. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3064

normalized thickness ¢{=d/d,. Then,

Ci=dg/dV,\=(d¢/dE,) (dE,/d V), (3)

where dg/dE;, which involves the differential dielectric
constant «;, is evaluated later. Since V= Eid= Edit,
one finally obtains

Cy= (1/dy) (dq/dEl){t[1+d—(—l‘i(—l|ngl—!)]}—l. (4)

Note that dg/dE, and ¢ will both depend on E; when
the layer exhibits dielectric saturation and compression.
The rest of the paper is largely concerned with the
form and results of such dependence.

INNER-LAYER THICKNESS

Double-layer differential capacitance measurements
near the ecm potential (V(=20) do not yield the thick-
ness of the charge-free layer but only the ratio (&°/dy) .3
The value of this quantity at the point of minimum
dielectric saturation (not necessarily the ecm, see later
discussion) is approximately 3.4X103, derived from
Grahame’s data® on NaF-water at 25°C. Following
Miiller,* we consider the inner layer to be mono-
molecular. Therefore, we expect it to be hexagonally
close packed in a plane and to have properties quite
different from bulk solvent.?»:#-36 In particular, a very
thin layer of solvent will have a smaller than bulk
dielectric constant®37 because of decreased molecular
association and the near equality of the local and applied
electric fields.?® Such a lowered dielectric constant thus
need not arise from saturation by a large natural field
as discussed by Grahame®?® and one of the present
authors.i0

Based upon the best available experimental evi-
dence,*** we shall use the value of 3 A for the diameter
of a water molecule in a close-packed monolayer.
DeBoer#® has mentioned that the radius of a surface
atom is often included in estimating the distance
between the surface and an adsorbed atom or molecule.
We should probably include an ionic radius in esti-
mating the thickness of the inner layer. Pauling gives

3 J. R. Macdonald, J. Chem. Phys. 22, 763 (1954).

2 W, G. Eversole and P. H. Lahr, J. Chem. Phys. 9, 530 (1941).

# J. C. Henniker, Revs. Modern Phys. 21, 322 (1949).

# L. S. Palmer, A. Cunliffe, and J. M. Hough, Nature 170,
796 (1952).

% T. Hori, Teion Kagaku, Butsuri Hen 15, 34 (1956). U. S.
Army Snow Ice and Permafrost Research Establishment, Trans-
lation No. 62, February 1960.

# Q. Stern, Z. Electrochem. 30, 508 (1924).

¥ C. G. Malmberg and A. A. Maryott, J. Research Natl. Bur.
Standards 56, 1 (1956).

¥ C. J. F. Bottcher, Theory of Electric Polarization (Elsevier
Publishing Company, Amsterdam, 1952), p. 174.

¥ D. C. Grahame, Z. Electrochem. 59, 740 (1955).

4 J. R. Macdonald, J. Chem. Phys. 25, 364 (1956).

4 N. E. Dorsey, Properties of Ordinary Water Substance (Rein-
hold Publishing Corporation, New York, 1940), pp. 43-44.

(1“ 6(()}) W. Brady and W. J. Romanow, J. Chem. Phys. 32, 306

960).

4 J. H. DeBoer, Advances in Catalysis 8, 24, 334 (1956).
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the values 1.44,% 0.95,% 1.33,% and 1.36 A® for the radii
of atomic Hg, Nat, K+, and F~, respectively. Allowing
for close packing and using somewhat less than the
full Hg radius, we shall take 4.4 A for do for NaF in
water, of which 1.4 A is accounted for by atom and ion
contributions.?® This leads to a value of ¢° of 14.9 for
the average dielectric constant of the inner layer at
25°C, in agreement with the value of 15 found in I. For
KF in methanol, a corresponding value of 5.4 A will
be used. Since the fit found between theory and experi-
ment is not strongly influenced by the value of do
used, an independent value of ¢° is needed to determine
dp from differential capacitance measurements.

DIELECTRIC CONSTANT AND ADSORPTION

A good review of the structure and dielectric constant
of ordinary bulk water and electrolytes has been given
by Robinson and Stokes.*® As shown by Hasted, Ritson,
and Collie” and Harris and O’Konski,*® the dielectric
constant of an electrolyte solution is reduced because
of saturation by the ionic fields as the concentration is
increased. We shall use this correction in the present
work, the effect being to improve slightly the agreement
with experiment near the ecm.

In the inner region ¢ will be made up of a distortion
polarization contribution e, and an orientational
contribution. Taking association in the inner region to
be small and E as the local field acting on the molecules,
we may write for sufficiently small £

a= ¢, +4rNi[ {u.(E) )}/ E] (5)
=e¢,+ah(E), (5"

where u, is the molecular vacuum dipole moment and
Ny is the dipolar concentration in the inner region.
The latest and seemingly most accurate determina-
tions of ¢, for water®® and methanol®-% yield 6.0 and
about 4 to 6, respectively. We shall adopt the value of
6.0 for water; curve fitting seems to be facilitated by a
value of 4.5 for methanol although the results are not
very sensitive to the value chosen. N, cannot be
calculated accurately but based upon hexagonal close
packing of 3 A diameter spheres in an effective thickness
of 4.4 A, N»=2.92X10%2 cm™3, the value we shall use.
The second term in Eq. (5) is the dipolar contribution
and tends to zero as £~ in sufficiently high fields that
dipole motion is inhibited. The pointed brackets in (5)

4 L. Pauling, The Nature of the Chemical Bond (Cornell Uni-
versity Press, Ithaca, New York, 1960), 3rd ed., p. 256.
4 Reference 44, p. 514.
“R. A. Robinson and R. H. Stokes, Electrolyte Solutions
(Academic Press Inc., New York, 1959), pp. 1-23.
# J. B. Hasted, D. M. Ritson, and C. H. Collie, J. Chem. Phys.
16, 1 (1948).
( b };‘ ) E. Harris and C. T. O’Konski, J. Phys. Chem. 61, 310
1957).
# R. W. Rampola, R. C. Miller, and C. P. Smyth, J. Chem.
Phys. 30, 566 (1959).
% 7. Ph. Poley, Appl. Sci. Research B4, 337 (1955).
8 J. A. Saxton, Proc. Roy. Soc. (London) A213, 473 (1952).
2 E. H. Grant, Proc. Phys. Soc. (London) B70, 937 (1957).
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indicate an average over spatial configurations, and we
shall assume that all dipole orientations are possible.
Watts-Tobin® has applied a two-state model to the
present situation based on the consideration that if the
water forms strong bonds with the mercury the possi-
bilities of orientation will be constrained by the bonding.
The extent of this effect is not certain. Perhaps a
better treatment would consist of a compromise
between the present one and that of Watts-Tobin. The
saturation function 2(E) is so defined that £(0)=1;
thus, the unsaturated dielectric constant €? is ¢,+a,
where ¢ is the maximum dipolar contribution.

The calculation of the dipole term in (5) requires
{u,(E) ). If 6 is the angle between an ideal dipole
vector and the direction of the applied local field E,
then quite generally

(ko )=po (cos )
u,,/f cost exp{ —[ W (8) /kT]} sinfdd
0

= , (6)
/ exp{ —[W(8) /kT]} sinbdé
0

where W(6) is the energy of orientation of the dipole.
If we consider the mercury to be a smoothed continuum,
the dipoles will be imaged therein and the result will
be more complicated than the Langevin® function,
which for small fields yields {(u, )= (u,%/3kT) E;.
Classical or quantum mechanical treatment leads to
the following expression for the interaction energy of a
dipole and its image?d:55;

W= ——-y,v2(a1+az COSZO) /253, (7)

where S is the dipole-image distance and ay=a,=1. If
we consider the ions in the diffuse double layer to
approximate another equipotential surface at the outer
Helmbholtz plane, the dipoles will also be imaged in this
plane. The interaction energy now has the same form
as (7) only now g; and a, are given by the following
expressions:
= %(22'{—23—‘221) s

ar= %(621+22+23) )

where S is the distance between the conducting
(imaging) sheets, a3(<S5/2) is the distance between
the dipole centers and one of the sheets, and

(8)

Z= i‘n—3= 1.2020569,
_ z°°:2n[n2+3(a3/ 85)?]
T a (/ST 9)
23~_— ( S/as) 3,

8 R, J. Watts-Tobin, Phil. Mag. 6, 133 (1961).
5 Reference 38, p. 161.
8 J. Bardeen, Phys. Rev. 58, 727 (1940).
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For the only case we are considering a;/S=0.5 and
Z,=8.828793, Z;=8, 4,=1.8030849, and af=3.0051419.
Note that we have neglected the effects of molecular
distortion and higher multipole moments.

Some of the neglected factors, as well as wave
function overlap,®®-% will tend to make the dipoles
line up preferentially in one direction.”® We represent
this effect by a “natural” field which combines all the
above anisotropies into a single term. We arbitrarily
choose the anisotropy energy to have the form

Wa=W[sin?(30) —1]= —3We[ 14 cos6], (10)
where Wy measures the strength of the anisotropy.
Clearly W, must depend on 6, and we have taken such
dependence to have the highest possible symmetry
consistent with the desired binding anisotropy. If
W,<0, as we find to be the case from the fitting of
Grahame’s data, then the tendency is for the negative
poles of dipoles to point outward from the Hg.

Collecting all terms in the energy W(4), including
the effect of the external field, we find to within an
additive constant,

W(0) = — [ Ex+3Wo] cosf— (asu,2/25%) cos?d. (11)
Now define E= E,+ E,, where Eoy=Wo/2u,; x=u,E/kT,
y=[aw,/2kTS¥P, and z=x/2y= E[S3/2a:k T . Note
that the anisotropy energy constant W is thus directly
related to the previously mentioned natural field E,.
If E, is determined from curve fitting, Wy can be
evaluated. Using the above definitions, (6) becomes

1 1
(ko )= tho f v exp(xy+y™y?) dy / / exp(@y+y*y?)dy
1 —1

(12)
_ 1 | ! sinhy
_#”[ (=) Te’Y(y+Z)+e"xY(y—Z)]’
where
V()= exp(—‘;’?)f‘ exp(a?)dx (13)
)

is exp(—£?) times Dawson’s integral,® which is itself
also proportional to erfi(£). If image forces are ignored
but the anisotropy energy is retained, one again
obtains the Langevin function, now involving the
effective field E rather than F;. At zero effective field,

%N, G. McCrum and J. C. Eisenstein, Phys. Rev. 99, 1326

1955).
( L ].)C. P. Mignolet, Discussions Faraday Soc.7-8, 105 (1949-50).

8 R, V. Culver and F. C. Tompkins, Advances in Catalysis 11,
73 (1959).

8 J. C. P. Mignolet, Chemisorption, W. E. Garner, editor (Aca-
demic Press Inc., New York, 1957), pp. 118-120.

& J_ C. P. Mignolet, Bull. soc. chim. Belges 64, 126 (1955).

&t H, G. Dawson, Proc. London Math. Soc. 29, 519 (1897).
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the unsaturated dipolar contribution to the dielectric
constant is

tim[ (s, )/ E]= (/387) {M}

2°Y (y)
= (u*/RT) A, (14)

and the term in curly brackets represents the deviation
from the simple Langevin function result. The quantity
A=[y—-Y () 1/[2*Y(y)] is just the wvalue of
[{cos8)/x] as E goes to zero. Although Y (£) cannot
be evaluated exactly in closed form, an excellent table
of this function exists,® and it may be readily calculated
with a digital computer, the course followed here. The
results of such calculations will be summarized in the
next section.®

It is unlikely that the entire binding energy of a
water molecule physically adsorbed on the mercury
electrode is made up of permanent-dipole image
attraction and anisotropy energy. In addition, there
will certainly be smaller induction and dispersion
effects® arising from molecular polarizability, but
these will be neglected here because of the larger
effects associated with the large permanent dipoles.
At any temperature, the average image binding energy
with E=0 is, from (7),

W= —uar+a:( { cosd))y]/2.5?
= —p a+a:0,]/2 % (15)

The average value of the anisotropy energy with no
applied field is

<Wa>=_%W0(1+<C050>); (16)

where (cosf ) must now be calculated from (12) using
(cosf )= {4, }/u» and taking E;=0. At absolute zero,
these binding energies reach their maximum values
which are

W)= —wH arta]/253,

(Wa)=—W,.

Using 1.85X107® esu for u, for water, S=4.4 A, and
Eo=—1.52X10% v/cm, a value determined later, one
finds ((W;)) max= —0.58 kcal/mole for single image
attraction, —1.4 kcal/mole for infinite images, and
({Wa)) max=—Wy=0.27 kcal/mole. Note that at 0°K
the presence of the anisotropy energy ensures that
the dipoles will all be lined up with their positive
poles next to the mercury surface. At 25°C, the
anisotropy binding energy is about 0.3(7. The above
results are of reasonable orders of magnitude. In
particular, it is gratifying that the anisotropy energy,

}T=O. (17)

@ B. Lohmander and S. Rittsten, Kgl. Fysiograf. Siillskap i
Lund Forh. 28, 45 (1938).

% In connection with a magnetic dipole problem, F. G. West
[J. Appl. Phys. 32, 249S (1961) ] has independently obtained a
result of the same form as Eq. (12).

8 F. London, Trans. Faraday Soc. 33, 8 (1937).
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determined in a completely different way from the
image energy, is from two to five times smaller than
the latter.2!

The ‘“natural” field E, arising from the binding-
energy anisotropy is not necessarily a real field but is
only a quantity which has the effect of such a field as
far as dipole orientation and dielectric saturation are
concerned. Since E, leads to some saturation, even
when the applied field E, is zero, we have defined
a(E) in Eq. (5) as D/E(=D:/E;), where E= Ey+ E;
and D=e¢ £=Di+D;. At the ecm, the average charge
on the electrode ¢ is zero, and we shall take the applied
electric field zero also at this point. This assumption,
which leads to nonzero dielectric saturation at the
ecm, in apparent agreement with experiment, necessi-
tates that the “natural” displacement Do not contribute
to the average electrode charge, which, by Gauss’s
law, will then be given by ¢=e€ Fi/4r. Had Gauss’ law
been applied to D rather than Dy, the ecm potential
would have occurred at E;= —Ey, a value for which
there is no saturation.?s

DIELECTRIC SATURATION

There has been a number of treatments of dielectric
saturation for bulk material,%%% none of which can be
directly applied to the present problem because each
includes association and uses the internal field ap-
propriate for bulk material. We expect to find that the
results of the last section, expecially Eq. (12), give
more realistic dependence of {u,) in the present
application. We shall now express the foregoing results
in a simplified, one-parameter form.

From the definition of the differential dielectric

1.0 - . L & .
hx) i \\::::?::.\ LANGEVIN: 3L(X)/X :
[MAGE CURVES « SINGLE IMAGES |

0.41= §5=°4(f4A N R
| p,=185x10"esu ]

0.2~ INFINITE IMAGES -]

oabl o4} L L voo1 gl
0.5 [} 3 10 20

F1c. 1. Normalized dielectric saturation curves. Dash lines:
Eq. (18), matching at high fields.

% Reference 38, pp. 193-198.

% F. Booth, J. Chem. Phys. 19, 391, 1327, 1615 (1951); 23,
453 (1955). Note that the 109, correction made in Eq. (3.12) of
the last cited article has been applied incorrectly by the author.

¢ J. J. O’Dwyer, Proc. Phys. Soc. (London) A64, 73 (1951).

% J. A. Schellman, J. Chem. Phys. 26, 1225 (1957). Using
Schellman’s value g,=35, his equations lead to a considerably
smaller dielectric saturation constant for water than Booth’s or
O’Dwyer’s work predicts. Further, the value of 5 does not, seem-
ingly, follow from Schellman’s formula for g.
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constant k=dD/dE it follows that x=¢+ E(de/dE) =
extag(E) and g(E)=h(E)+E[dh(E)/dE]. In
agreement with Grahame® we use the following
explicit forms:

h(E) = (BE)~! tan~1(BE), (18)
g(E)=[1+bE*], (19)

which are of the proper high-field limiting character. In
these equations, & is a constant controlling the strength
of saturation effects.

For comparison with present results, it is desirable
to obtain values of the saturation constant & which
best describe bulk water and methanol.#.68.70-7¢ For

small saturation we may write
€ — e (K0— k) X 23,

(20)

and comparison with (18) or (19) yields for the

conventional saturation parameter 8,
d=2%ab. (21)

The present work leads to the following expressions
for @ and #(E):

a=4r N, Ao/k T, (22)
~1 sinhx
By =~/ oo ] [ s
(23)
When image effects are omitted, one obtains,
a=4rNwu*/3kT, (24)
h(E)=(3/x) L(x) =(3/x) (cothx—x1), (25)

where L(x) is the Langevin function. The values of b
which make the high-field values of (18) equal to
those of (23) and (25) are

b= (rxAo/2E)?, (26)
b= (rx/6E)". (27)

These values will not lead to exactly the § values which
could be derived from (23) and (25) for the initial
saturation range, but they apply better over the range
of appreciable saturation important in the present
work.

The forms of the saturation functions k(x) are
shown as solid curves in Fig. 1. The Langevin curve is
a universal function of x, valid for any temperature.
The two image curves, however, are calculated for
25°C. The dotted curves show the degree of fit possible

(images)

(no images)

% D. C. Grahame, J. Chem. Phys. 18, 903 (1950).

0 7. Malsch, Physik Z. 29, 770 (1928); 30, 837 (1929).

'W. F. Brown, Jr., Handbuch der Physik, edited by S. Fliigge,
(Springer-Verlag, Berlin, 1956), Vol. 17, p. 111,

2 Reference 69, p. 905.

% J. A. Schellman, J. Chem. Phys. 24, 912 (1956).

“D. C. Grahame, J. Chem. Phys. 21, 1054 (1953). Grahame
actually speaks of fitting our Eq. (19) to Booth’s curve, but it is
clear that in fact he used (18).

3067

TaBLE 1. Comparison of inner-layer dielectric parameters at 25°C.

Theory and bX 10+
assumptions a v r? (cm/v)?
Bulk water, 72.3 1.455 0.9998 (12)
experimental
Onsager-Booth, bulk 22.4 1 1 1.8
water, no association,
Langevin, Ny 10.2 1 1 0.6
Egs. (24), (27)
Single images, N 11.6 1.114 0.9998 0.8
Egs. (22), (26)
Infinite images, Ny 14.6 1.300 0.9999 1.3
Egs. (22), (26)
Experimental, derived 8.9 2.15 0.9999 2,27

from present curve
fitting

using Eq. (18) together with the final-slope values of b
above. The maximum error, about 69, is quite small
enough for present purposes.

Table I shows some experimental results and the
results of calculations using the preceding formulas.
The values in the table apply to bulk water or water in
the inner layer. A value of u,=1.85X 10718 esu has been
used, together with e¢,=6 and dy=S=4.4 A. It has
been found that the temperature dependence of ¢ over
the range of 0° to 100°C can be well expressed by an
equation of the form a(7)=HT—, where T is the
absolute temperature and H is a constant. Values of »
shown have been obtained from least-squares analysis
of experimental data or theoretical results. Such fitting
is first carried out using the linearized form of the
above equation, here obtained by taking logarithms of
both sides, which allows both H and » to be obtained.
This procedure yields a correlation coefficient whose
square will be later distinguished by a subscript {,
denoting transformed. Using the resulting value of »,
another least-squares analysis can be made considering
T~ as the linear variable. The square of a correlation
coefficient obtained in this way will be quoted through-
out this work without a subscript, as in Table L

The results given in the first row of Table I are
based on the experimental results of Malmberg and
Maryott? and of Malsch.” The results of the second
row are included to show the theoretically expected
values of @ and & for bulk water (internal field not
equal to external field) without association. The 109,
correction developed by Booth® in his later work has
been included in the calculation of 4.

The next three rows of the table should be compared
to the last row, where some of the later curve fitting
results are presented. Agreement is good to order of
magnitude. No closer agreement can be expected from
the present approximate theoretical treatments; never-
theless, they justify our taking much smaller values of
the maximum dipole contribution to the dielectric
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constant ¢ and the saturation constant b than appro-
priate for bulk water. Of the many factors which
mitigate against close agreement between theory and
experiment here, especially important are probably the
asphericity of the molecules in the inner layer, planar
molecular interaction, the small distances involved, and
the strong inhomogeneous image fields, which may
lead to values of u, different from the vacuum value
used here.

Disagreement between theory and experiment shows
up especially in the temperature dependence results.
None of the theoretical values of » is close to the
experimentally determined value of 2.15. This figure is
itself suspiciously close to 2.0 and, in fact, it is found
that least-squares analysis of the values of ¢ derived
from the data using »=2 yields »?=0.9998, almost as
high as that with 2.15. Further, the earlier equations
show that & should have the same temperature de-
pendence as [a(7) P, provided N, and g, are taken
temperature independent over the limited range of
present interest. However, it is experimentally found
that best differential capacitance curve fitting is
obtained with b« T2 in agreement with the pre-
dictions of rows two and three and in approximate
agreement with the single-image result. Further
complexity would have to be added to the present
theories to resolve this apparent discrepancy between
the temperature dependences of ¢ and b. Since Pople™
has found good agreement between the experimental
temperature dependence of the dielectric constant of
bulk water and that calculated from a theory which
involves bendable hydrogen bonds and association, it is
possible that changes of planar association with
temperature may explain much of the present dis-
crepancy. Finally, it is worth mentioning that the
image-theory temperature dependence may vary ap-
preciably with the distance S. For example, the value
S=3 A leads to a value of 1.372 for » in the infinite
image case.

It is often stated or assumed that the first adsorbed
layer of molecules having a permanent dipole moment
is completely aligned in one direction with the dipole
vector normal to the surface.” Such alignment corre-
sponds to complete dielectric saturation, so that e=e,,.
In our present terms, it requires that at the temperature
of interest (W,)>kT, in disagreement with our
results. If the molecules of the inner layer were com-
pletely aligned with no external field applied and if
€,=6, the largest likely value, the experimentally
required value at the ecm of the inner-layer capacitance
Ci which is about 32 uf/cm? for water at 0°C (assuming
no specific adsorption at this point), would lead to an
inner-layer thickness of only 1.66 A, far too small a

% J. A. Pople, Proc. Roy. Soc. (London) A205, 163 (1951).
% A. R. Miller, Adsorption of Gases on Solids, (Cambridge
University Press, Cambridge, England, 1949), p. 105.
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value. Further, the addition of an external field could
produce no more dielectric saturation, and the decrease
in Cy and C; found on cathodic polarization could not
be explained as arising from further saturation. For
the same reasons, it is not possible to obtain even
rough agreement with experiment on assuming that
there is a sufficiently large “natural” field to cause ¢
at the ecm to have reached its required value” of about
15 solely because of dielectric saturation down from
the 25°C bulk value of 78.3. Our present methods of
justifying this low value are greatly preferable since
they do not depend on such great initial saturation
and take into account, directly, differences in behavior
between the inner layer of solvent molecules and such
molecules in bulk.”®

At the ecm and for the concentration range considered
in the present work, most water molecules in the inner
layer will not have a solute ion next to them. For those
that do, however, there will be some dielectric satura-
tion from the ion field, especially in the region around
positive ions.#” Since positive ions produce more
saturation than negative, this effect will not be sym-
metric in FE;, but will become more important for
cathodic than for anodic polarization. Since increased
ionic concentration next to the inner layer is associated
with an increased field magnitude in the inner region,
the foregoing field-dependent treatment of dielectric
saturation will also account for this ionic saturation.
The differing effects of positive and negative ions
would require somewhat different values of & for
positive and negative polarization, however. Some of
the asymmetry about the ecm which has been attributed
to the anisotropic binding energy W, probably arises
from this difference. However, since the ionic-saturation
effect is concentration dependent and curve fitting
without it yields good agreement in the region of the
ecm, to the present order of approximation the ionic-
saturation effect need not be considered separately
from the other saturation effects in the inner layer.

INNER-LAYER EQUATIONS OF STATE
AND COMPRESSION

The electric field produces a pressure in the inner
region which in turn affects such properties of the
inner region as dielectric constant and thickness. We
first consider, phenomenologically, the dependence of
these properties upon pressure and then shall de-
termine the dependence of pressure upon electric field.
If one replaces linear terms in existing approximate

7 Here we are in complete agreement with Mott and Watts-
Tobin,® although the agreement is somewhat fortuitous consider-
ing the uncertainties in the values of ex and do. The present work
assumes a larger value of e, than does the work cited.

" Again we are in complete accord with Mott and Watts-
Tobin,®
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phenomenological equations of state™ % by logarithmic
ones, one obtains the following results®! which avoid
earlier difficulties of negative quantities at high
pressures:

Vo/V=N=p/py= (1+map)*™, (28)
e/ey=(1-+map)m= (V,/V)r=N", (29)

where p is the density, and the following simplifying
relations have been introduced:

pEP_POy
m="V,y/C loge, (30)

n=mAe loge= Ae;V,/C,

a=[m(Py+B) I

The essentially temperature independent constants A
and C and the pressure independent constant B are
parameters appearing in the approximate Tait,%-%
and Owen-Brinkley®—% equations of state, and Py and
Vo are the initial reference pressure and volume. The
quantity e is the dielectric constant at the pressure
P,. Equation (28) yields the following result for the
instantaneous compressibility,*

—V(aV/aP)r=Br(P)=a/[1+map]. (31)

When Eq. (28) is applied to Bridgman’s data® for
bulk water, excellent fits may be obtained.® There is
no way to transform (28) so that both 7 and « can
be obtained simultaneously from least-squares fitting,
but « may be so obtained for given m. When such a
procedure is carried out, it is found that the value of m
which leads to the highest 7,2 and lowest sum of squared
deviations S, simultaneously yields a value of o in
excellent agreement with independently measured
values of Br(1). As an example, the best m for the 0°C
data is 6.58, 7?2 is 0.999997, and S, is 6.42X107°. The
value of a obtained is 5.06)X10~1 c¢m?/d, which may
be compared with Marshall, Staveley, and Hart’s®
value of 5.04X 10~ cm?/d. Since there are no points
in Bridgman’s data for pressures between 0 and 500
kg/cm?, Eq. (28) performed a very long extrapolation

®W. Wien and F. Harms, Handbuch der Experimentalphysik,
(Akademische Verlagsgesellschaft, Leipzig, 1926), Vol. VIII,
part 2, pp. 224-228.

8 P. G. Tait, Physics and Chemisiry of the Voyage of H. M. S.
Challenger, (Her Majesty’s Stationery Office, London, England,
1888), Vol. II, part IV. S. P,, LX1I.

81 H, S. Harned and B. B. Owen, The Physical Chemistry of
Electrolytic Solutions (Reinhold Publishing Corporation, New
York, 1958), p. 163, 379-381.

2 B B. Owen and S. R. Brinkley, Jr., Phys. Rev. 64, 32 (1943).
( 53];3. Hiickel and E. Ganssange, Z. Physik. Chem. 12, 110

1957).

8 P W. Bridgman, Proc. Am. Acad. Sci. 48, 309 (1912).

8 A more detailed discussion will be published separately.

8 J, G. Marshall, L. A. K. Staveley, and K. R. Hart, Trans.
Faraday Soc. 52, 19 (1956).
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almost perfectly in yielding 5.06)X107 cm?/d as the
best value at 0°C.

For bulk water, curve fitting such as that discussed
above shows that # is not entirely temperature inde-
pendent but decreases to about 6 by 15°C and remains
nearly constant above this temperature.®® The tech-
niques of comparison with measured values of 8r(1)
and/or determination of m to give least-squares data
fitting are unavailable for the material in the inner
layer, whose free volume is certainly different from that
of bulk solvent. This fact will unquestionably make the
inner-layer o smaller than that of bulk material, but its
effect on m is unknown. Therefore, we select m=1 as
the temperature-independent value to be used in
almost all of the curve fitting. Such a choice, while it
does not yield quite as close a fit as will higher values,
eliminates one disposable constant from the curve
fitting and is consistent with the results of linear
stress-strain analysis, as is shown later. Even for bulk
water, the choice m=1 still leads to an 2 of 0.991 for
the 0°C Bridgman data.

Equation (29) involves ¢; actually pressure can affect
only the polarization, which is proportional to (e—1).
Therefore, an improved version of (29) is

e—1=(e—1)\" (32)
Using Bridgman’s data® for A as a function of P, and
the dielectric constant-pressure data of Kryopoulos®
and Scaife$® for bulk water at 20°C, least-squares
analysis using (32) yields #=1.313, S,=4X107% and
r£=0.9998. Because of the high value of ¢ for water, a
similar analysis using (29) yields virtually identical
results. Jacobs and Lawson® have analyzed experi-
mental data for a variety of polar liquids and find that
d(lne) /d(Inp) is a positive number very nearly constant
over a wide range of pressure. Equation (29) yields
just 7 for the value of the above derivative, while (32)
leads to #n=d[In(e—1)]/d(lnp). The value of
d(1lne) /d(Inp) for water at 20°C quoted by Jacobs and
Lawson was 1.34220.02. They find that the derivative
seems to be somewhat temperature dependent for
some polar liquids. Note that since a>>e, for water,
the above results measure almost entirely the pressure
dependence of the dipole contribution to e.

There are no data on the pressure dependence of e,
itself for water since such results would require com-
bined pressure and microwave measurements. A small
number of data on the dependence of the refractive
index at 25°C on pressure are available,® however, and
can be fitted by (32) with e replaced by the square of
the refractive index. The result is #=1.102 and

8 S. Kryopoulos, Z. Physik 40, 507 (1926).

8 B, K. P. Scaife, Proc. Phys. Soc. (London) B68, 790 (1955).

8 I.) S. Jacobs and A. W. Lawson, J. Chem. Phys. 20, 1161
(1952).

% J. S, Rosen, J. Opt. Soc. Am. 37, 932 (1947).
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r2=0.9997. Note that this value of » applies to only
the electronic contribution to the distortion polarization.

There is no @ priori reason to expect that the pressure
dependence of the distortion and dipole parts of the
polarization will be the same, and the foregoing results
show that there is, indeed, a difference between the
electronic and dipolar parts for bulk water. The two
effects can be separately accounted for by modifying
Eq. (5') along lines suggested by the form of (32). The
resulting more general formula is

e—1=N\"(e,—1)+Nah(E), (33)

where 7 is a new constant which may differ from #, and
the present additive combination of the distortion and
dipolar contributions is clearly an approximation.?
The @ in (33) is defined at the reference pressure Py
and its density dependence included in the A" term. All
the pressure measurements cited have been made, of
course, with E=0 and the differential dielectric
constant (there equal to the static constant) measured.
The distortion polarization is proportional to (e,—1)
and in the inner layer should depend directly on
density, not specifically on dipole concentration,
suggesting that »=1 would be the best value to use in
(33). The value n=1 is also in good agreement with
the 1.102 found for the electronic contribution in bulk
water. Therefore, we shall use a temperature-inde-
pendent value of unity for # throughout the differential
capacitance calculations.

Let us now consider the inner layer as a continuous
spherical shell surrounding a compressible mercury
drop. Denote the average shell isothermal compressi-
bility at zero applied field as Bz, where the subscript E
is used to suggest that the compressibility of a material
in an electric field will not necessarily equal that
obtained from direct pressure measurement. Then, by
definition Bg=—V-Y(dV/3Pr)r, where Pgr is the
electrostatic pressure and By is evaluated at Ey;=0.
Using linear elasticity theory for a continuous isotropic
medium, we have carried out a detailed analysis of
the compression of a spherical shell surrounding a
compressible sphere for arbitrary sphere radius and
shell thickness and for arbitrary radial pressures. The
result is complicated and will not be given here. In the
present case, the shell thickness is many orders of
magnitude smaller than the sphere radius and great
simplification can be made in the results. In particular,
it turns out that, as expected, the compressibility of the
mercury, even if it were much greater than that of the
inner layer, would not enter into the final results for
the layer compression.

If Pg is the constant electrostatic pressure acting in
the inner region, then the simplified results of the linear
analysis may be expressed as

(V="00)/Vo=(t—t) /o= — (Be/3)[(1+0) /(1—0) ] P,
(34)
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where ¢ is Poisson’s ratio for the inner region and V=1V,
at Pp=0. By definition, {,= 1. We have taken the initial
volume to be that with hydrostatic pressure from the
bulk of the solution acting but with no electrostatic
pressure. Thus, one may identify Pg and the p of Eq.
(28). Without any change to first order and hence
without a change in the results of the linear analysis,
one may now replace the ¥y and 4 in the denominators
of (34) by V and ¢ Then we obtain

Vo/V=t0/15=1+aPE, (35)

where we have set

a=(Be/3)[(14+0)/(1—0}],

a quantity which depends only weakly on temperature
and which will here be taken independent thereof.?*!
Note that (35) is of exactly the form (28) with m=1.
Thus, thel inear stress-strain analysis yields results
entirely consonant with the linear version of the
modified Tait equation (28) which we shall use.

The value of ¢ appropriate for the inner region is
unknown. However, the value for ice® is about 0.37,
and the use of the reasonable value % for ¢ in (36)
yields Bg=1.5c. Although Bz is the average electrically
determined compressibility of the inner region, this
region is really not entirely homogeneous. We have
assumed that the thickness when Pr=0 is made up,
for water solvent, of about 3 A from a water molecule
and 1.4 A coming from parts of a surface mercury atom
and of a closest-neighbor solute ion. If we assume that
the material of the atom and ion is incompressible
compared to the water molecule, then the compressi-
bility of the latter in the inner layer 8, is given by
Bu=4.4B8z/3. Using o=3, B,22.20. For methanol
using 5.4 and 1.4 A and ¢=3, 8,.22a.

Later curve fitting yields a=1.7X10"" cm?/d for
water solvent and 8.5X10™% cm?/d for methanol
solvent. When these values are combined with the
above results, one obtains 3.7X 10~ and 17X10~1
cm?/d for the approximate compressibility of water
and methanol molecules, respectively. These values
should be compared to 4.57X107 and 12.6X1071
cm?/d, the bulk values for water and methanol,
respectively, at 25°C. Because of the greatly reduced
free volume in the inner layer as compared to that in
bulk solvent, the values of the ‘single-molecule”
compressibility 8, and 8. should be smaller than the
values for bulk water and methanol. Even for water,
where this is actually the case, it appears that 8, is
somewhat larger than might be expected, but in view
of the uncertainties which went into the calculation of
these quantities, the final values are not surprising.
Note that when the free volume is reduced or elimi-
nated, the application of pressure actually involves the

(36)

9 Reference 41, p. 446.
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compression of the molecules themselves, a process
discussed by Bridgman® and Macleod.%®

It will be noted that (34) or (35) shows that the
relative change in innerlayer volume equals the
relative thickness change. If we consider a physical
dipole in such a situation, the change in volume when
pressure is applied will increase the amount of matter
per unit volume and will thus increase the dipole
contribution to e. This effect is taken into account in
the A" term of Eq. (33). At the same time, the decrease
of inner-layer thickness will decrease the effective
charge separation of the dipole and will thus decrease
#v. The two effects will nearly cancel on the average.
Thus, it appears that for the inner layer it is best to
include no dependence of the dipolar dielectric constant
contribution on volume and to take r=0. This choice
yields a slightly better fit between theory and experi-
ment than does taking r=1, and it also leads to some-
what larger values of o than are required by the latter
choice. Note that the reduction in u, with decreasing
thickness affects the rapidity with which dielectric
saturation occurs but has not been included explicitly
in our saturation calculations. It can be approximately
accounted for by making a slight increase in the
theoretical values of b given in Table I, bringing them
closer to the value required for good curve fitting.

PRESSURE AND ELECTROSTRICTION

The electrostatic pressure in the inner region arises
from two effects. One is the direct compressive effect
of the diffuse layer. To the degree that this region can
be considered to produce a capacitance in series with
that of the inner layer, it can also be considered as
producing an effective capacitor plate at the outer
Helmholtz plane having equal and opposite charge to
that of the electrode, the other plate of the inner-layer
capacitance.® The two oppositely charged “plates” will
attract each other and exert a pressure on the
intervening material. Only this effect was considered
in L.

“Electrostriction” is generally used to denote the
change in pressure occurring in a dielectric fluid sub-
jected to an electric field. Grahame?® has, however,
used electrostriction to mean the distortion of a solvent
molecule with separation of its charge centroids and
consequent increase in the effective dielectric constant.
This process will almost always be overshadowed by
the compressive effect of electrostriction as it is com-
monly understood. As discussed in the last section, it
even appears that compression may, in some instances,
lead to a reduction in dipole moment and little or no
over-all change in dielectric constant. Grahame? has
later adopted the more usual view that the principal
result of electrostriction is a compression which, in
the present case, will lead to a reduction in inner-layer
thickness. The last section has shown that any pressure,

92 P, W. Bridgman, Revs. Modern Phys. 7, 1 (1935).
% D. B. Macleod, Trans. Faraday Soc. 40, 439 (1944).
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electrostrictive or not, may lead as well to an increase
in effective dielectric constant arising from increased
density and an increased number of dipoles per unit
volume. All of these effects are taken into account in
the present treatment.

Let us again consider the experimental system with
spherical symmetry. Such symmetry leads to an
electric field which varies through the thickness of the
inner layer. If R; is the radius of the mercury sphere
and R, that to the outer surface of the inner layer,the
outer Helmholtz “plane,” then since Ry and R, differ
exceedingly slightly, it will be an excellent approxima-
tion to take the density and dielectric constant inde-
pendent of position through the inner layer since the
field will actually vary only infinitesimally. These
assumptions should make our results agree exactly
with those for a plane layer in the limit R»—R;. Let
us further make the approximation introduced earlier
that the dielectric constant abruptly changes from ¢
in the inner region to e; just beyond its outer boundary.
The actual variation will be rapid but not a step
function. Finally, assume a charge ¢ on the mercury
and a charge —g on the total diffuse layer replaced by
an equivalent conducting shell at a distance Rs.

To calculate the pressure, we first find the Helmholtz
free energy ® given by ®=U—T.S=Ugico— T Serect
Umeon— T Smeen. Here we have broken the energy and
entropy into electrical and mechanical parts, a pro-
cedure valid to at least first order. Defining the three
pressures Pi, Py, P; at r=Ry, R, R, these quantities
may be calculated from the relation

P;=—(08/9V) 1 R; Ri.EN, (37)

where 1, §, k are any permutation of 1, 2, 3. Expanding
® as before, the pressure consists of two terms P;=
(Pg)+ (Pg) s, where ( Py);is the hydrostatic pressure,
(Pg) = — (0Uc1ee/OV) 7,r; Re 5.5, and it is assumed that

(0Setec/OV ) 7 &) ke N=0.
The electrostatic pressure may now be calculated
from the electrostatic energy

Uetee= (8m) 7 f (De/e)dV =% fR 1 (©*Drdr/e)
(e] R2
=§q2-/R1 (dr/er®)=2Lq [61 /;zl (dr/r?)

R3
+ ]
Ry
=3¢ er (R —R: ) +eH(R—R) ], (38)

where D, is the displacement associated with g.
Taking proper account of signs and simplifying the
final results by setting R/ Ry=21, one finds

(Pg)1=(aE?/8r) {(1+[3(Ine) /3(InN) Jr e}, (39)

(Pr)a= (e E/87) (1-+[0(Ine) /(InN) Tr v~ (/@) ]
(40)
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The direct contribution from the diffuse-layer ions is
(Pr)s= (eE?/8r) = (e*/e:) (Ei%/87). (41)

If we consider R; to be slightly greater than R, and
then let it approach the latter, the total pressure at
R, will be [(Pr)2+(Pgr)s], equal to (Pg):, and the
pressure is thus constant within the inner layer. Let us
therefore identify (Pg): and the Py previously
introduced.

Equation (39) for Pg admits a most simple interpre-
tation. Its first term is just the force per unit area
between two oppositely charged capacitor plates with
a medium of dielectric constant ¢ between them. The
second term is the usual expression for electrostric-
tion*™—% for the case of position-independent density
(A=p/po). Petukhov has devised a direct method of
measuring this term in liquids.*

When the general expression (33) is used for ¢ and
substituted in (39), one obtains

Pp=(E’/8m)[1+ (1+n)\(ex—1) +(1+r) Nak(E) ],
(42)

which combines compression, electrostriction, and
dielectric saturation. If FE; is given in wvolts per
centimeter, (42) may be rewritten as,

Pr=442708 X107 E2[ 1+ (145) M (e, — 1)

+(14r)Neh(E)] (d/cm?). (42)

We also have
A= (14-maPg)lin (28")

from (28). Equations (42) and (28’) must be solved
together by iteration in the general case of arbitrary
n, r, and m. Such iteration has been included as part
of the computer program for the present problem and
is found to converge rapidly in the range of interest.
The interlocking of (42) and (28') is a kind of positive
feedback, since an increase in pressure increases A
which in turn, increases pressure further. In the
present case, we shall usually take m=#n=1, »=0, and
we may then solve directly for the pressure to give

(E/87)[2¢,~1+ak(E)]

O ale,—1) (E2/2m) =
Ar=N(e,,—1),
Bi=Nak(E),

FlE}‘rag(E)7

_ aPE(nAl-i-rBl) [2(E/E1) (1+n’A1+7”B1) +7”<F1—B1)]

J. R. MACDONALD AND C. A. BARLOW

The feedback factor in the denominator must not
vanish, and this condition sets an upper limit on the
permissible F; for which the equation is at all pertinent.
This upper limit is not approached in the present curve
fitting. In an actual liquid, # will considerably exceed
unity and the feedback will be far less strong for high
E..

It is important to note that in the derivation of (39)
to (41) chemical potential is not held constant after
the electric field is switched on. It will also be noted
that (39) involves E; rather than E= Ey+E:. Pgis,
therefore, the equivalent pressure arising from the
applied field only. The difference in dipole image
attraction with positive and with negative poles next
to the electrode is expressed by the effective field F.
This difference itself will lead to an average adsorption
pressure which is certainly not homogeneous but may
still be evaluated approximately from (39) with Fg
replacing E;. Using the value of Ej determined from
curve fitting for water solvent, the resulting pressure
Pg® is about 20 atm. It is probably more accurate to
refer the initial layer volume and compressibility to
this pressure rather than to 1 atm, but the actual
differences caused thereby are completely negligible
for present purposes.2®

FINAL. FORMULAS

Equation (4) for C; involves the quantity dg/dF,
and functions of the normalized layer thickness ¢. The
results necessary to calculate C; will be given in this
section in complete generality even though for curve
fitting we shall usually use m=n=1 and r=0.

In earlier sections we have taken ¢=eF;/4x, thus
eliminating any contribution from D, to g¢. It
immediately follows that

dg/dEx= (Ar) [+ Ei(de/dEy) ]
= (4n) [(E/E) i+ (Eo/E) e ].

Thus, C; involves both « and . When «; is obtained
from the expression for ¢, the result is complicated
because of the dependence of ¢ on E; through A and
Py and on E through A(E). The following quantities
will therefore be introduced to simplify the formula
for x;:

(44)

(45)

YT {14 maPetn’ AL1+ (m—n)aPg ]+7 B 1+ (m—7)aPz ]}’

#“E. V. Condon and H. Odishaw, Handbook of Physics (McGraw-Hill Book Company, Inc., New York, 1958), p. 4-8.

% W. F. Brown, Jr., Am, J. Phys. 19, 290 (1951).
% B. K. P. Scaife, Proc. Phys. Soc. (London) B69, 153 (1956).
9 V. A. Petukhov, Soviet Phys.—Acoustics 4, 294 (1958).

Downloaded 24 Jul 2007 to 152.2.62.11. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



DOUBLE-LAYER CAPACITANCE IN ELECTROLYTES

where #'=14x and '=1+r. In the curve fitting the
expressions for g(E) and #(E) given in Egs. (18) and
(19) will be used, but the results below are independent
of the specific forms of these functions.

A number of the previously derived equations, as
well as those for x and d(In#)/d(In| E;]), can be
expressed in terms of the above quantities. The perti-
nent results, which include saturation, electrostriction,
and compression effects, are summarized below:

PE= (E12/87r) [:1+n'A1+r’Blj,
€= 1+A1+B1,
K1= 1+A1+F1+G1,

[d(nt)/d(In| E, ) ]=— | E\/E ‘ (Gy/[nAs+7B1]).
(46)

The following calculation procedure may now be
employed. First, a value of E; is selected and V,
calculated. Then Pg, &, and X are obtained by iteration.
The quantities ¢ and E, may then be calculated, and
Egs. (1) and (2) used to give Cs and V,. The potential
Vo follows from Vi and V.. Finally, Egs. (4) and (44)
are combined to yield C;, and the total differential
capacitance Cr is calculated. The static or integral
capacitances may also be readily obtained and are, in
fact, part of the standard digital computer output.

If there were no electrostriction, the term G; in x
would be zero. This added term is relatively small
under all conditions and only reaches a value slightly
greater than unity at the extremes of the experimental
range of differential capacitance measurements. Note
that Gi/(nd;+7rB;) is not zero, however, in the
absence of electrostriction provided the inner layer is
compressible. The term | E/F; | which appears in the
expression for Gy and that for d(Inf) /d(In | E; |) arises
because E not E; appears in the relation between g( E)
and 4#(E) and because Pg involves E; rather than E.
This ratio will be very close to unity for large E; and
the values of E, used herein, and the terms in which it
appears will be completely negligible for small E;. In
addition, G, and d(Int) /d(In | E;|) are small correction
terms to begin with. Thus, the presence or absence of
| E/FE;| has very little influence on the formulas or
curve fitting. If Py were taken proportional to k2
rather than E:?, the terms involving | E/E:| would
disappear from the formulas and best curve fitting
would be achieved with a value of « less than 59
smaller than presently required. In addition, over most
of the range where dielectric saturation is appreciable,
E;/E in (44) will be nearly unity and E,/E nearly
zero. Because of the uncertainty in the field dependence
of the dielectric saturation functions, the small dif-
ference between k;/4r and the expression (44) has
been ignored in some of the curve fitting. Its inclusion
leads to slightly larger values of & than those given.

Dielectric saturation leads to a final decrease in A( E)
proportional to £~ Sensible values of r and m will
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always be such that the electrostrictive contribution
to By and F; will not outweigh this decrease. Thus, it
may be assumed that these quantities will go to zero
as F; and Pg increase without limit. The correction
term Gy is still not limited as E; increases, however,
but will continue to increase because of the factor A*
which does not cancel out. If m is greater than #, the
usual case for liquids, the derivative d(Inf) /d(In | E; |)
will approach the constant —2/(m—#n) in the above
limit. On the other hand, in the exceptional case m=n
the derivative goes to 2#'A:/m, an expression which
increases indefinitely as E; increases. Since the deriva-
tive appears in Eq. (4) as [14+d(Int) /d(In | E; |) 17, it
is clear that it must be limited in magnitude to less
than unity. The above results therefore suggest that
unrestricted application of the present expressions
requires m>n and [2/(m—n)]<1. These conditions
will be well met for all real liquids. For the present
close-packed monolayer, we have generally used
m=n=1 for simplicity and convenience. No trouble
arises from this choice in the curve fitting since the
maximum value of | d(In#) /d(In| E; |) | which occurs
is less than 0.25.

CURVE FITTING AND DISCUSSION

In this section we shall discuss the results of applying
the foregoing theory to Grahame’s experimental
differential capacitance measurements on NaF in
water®? and KF in methanol®® solvents. The data
presented in the following curves have been plotted
directly from Grahame’s original smoothed strip sheets
and should, therefore, preserve the high accuracy of
the original measurements.®® We have elected to
compare theory and experiment using differential
rather than static or integral capacitance curves.
Integral curves are much smoothed and averaged by
the integration process and thus fail to show the
detailed fine structure which appears in the directly
measured differential capacitance curves. Fitting of
theory to integral curves is therefore a less precise and
stringent test than is fitting to differential curves. We
have also elected to compare with total double-layer
capacitance rather than with Grahame’s curves for Ci.
The reason for this choice is the uncertainty in
Grahame’s procedure for calculating C;. It will be
shown that the series capacitance assumption is not
generally correct; as a consequence, it is necessary to
employ a detailed theory of the specific adsorption
process in order to extract the inner-layer capacitance
from the total capacitance data in the region of specific
adsorption. Correspondingly, comparison of Cr data
with a theory omitting specific adsorption may bring
to light discrepancies arising from several combined
adsorption effects in addition to the direct effect upon
inner-layer capacitance.

It will be noted that for both the water and methanol

% We are grateful to Dr. Roger Parsons of the University of
Bristol for furnishing us with these data.
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Grahame Data
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Fic. 2. Fitting of 0.01N, 0°C differential capacitance data for
various assumptions. Curves displaced successively from bottom
by 6 uf/cm?

solvents, the anion is F~. As pointed out by Grahame
and Soderberg® and by Grahame,? the fluoride ion,
perhaps because of its size and low polarizability, seems
to be the only univalent anion which exhibits little or
no specific adsorption on mercury even with positive
polarization. Thus it is the ideal, and, presently, the
only choice available for comparison of experiment
over a wide range of polarization with a theory, such
as the present one, which includes no quantitative
account of specific adsorption.

Grahame!® has criticized the theory of I because it
only yields differential capacitance curves symmetrical
about the ecm, and so cannot give good agreement
with experiment very far into the positive polarization
region. This restriction is partly removed in the present
work by the inclusion of the anisotropic binding energy
of inner-layer molecules, but the results of this section
show that still further assumptions will have to be
made to attain agreement between theory and
experiment very far into the positive region.

The detailed fitting of theoretical curves to
Grahame’s data has been carried out in the following
way. For water it was decided to do the primary
fitting using the 0°C data because the dielectric
saturation and dipole constants & and ¢ may be ex-
pected to increase with decreasing temperature. Thus,
the variation in dielectric saturation with applied
pressure differential should show up most strongly at
the lowest available temperature, allowing its effect to

® 1. C. Grahame and B. A. Soderberg, J. Chem. Phys. 22,
449, (1954).
00 1y, C. Grahame, Ann. Rev. Phys. Chem. 6, (1955).
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be most accurately assessed there. Grahame’s derived
C; vs g curve for 0°C does, in fact, show more structure,
especially in the positive charge region, than do the
results at higher temperatures.

Calculation of a theoretical curve using the digital
computer required that the following constants be
specified. For each solvent the temperature, normality,
bulk dielectric constant e, saturated dielectric constant
€., and ecm value of d, dy, were taken as known, non-
disposable constants. In addition, the values n=m=1
and =0 were usually used. Then, the disposable
constants @, 8, Ey, and « had to be determined by trial
and error and successive approximations. There was
only slight interaction between the effects of changing
the first three constants and that of changing «; thus,
the latter could be found quite rapidly once best values
of the first three were determined.

The fitting was begun with the 0°C, 0.01V, water-
solvent data. E, was selected to make the peak of the
theoretical Cy curve, the point of minimum dielectric
saturation, occur at the charge value of the corre-
sponding peak of Grahame’s C; curve for this tempera-
ture. At 0°C, these peaks are well defined and a value
of xo=u,Eo/kT could be determined which is felt to
be quite accurate. Variations in its value by 109, or
more decreased the agreement between theory and
experiment quite noticeably. With a=0, a value of a
was then found which produced good agreement
between the theoretical value of Ci at the peak and
Grahame’s value. Then, values of § were tried until
good agreement with the experimental Cr curve was
attained in the region near the ecm where the effect of
a was negligible. Finally, a was adjusted for best fit in

60
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Fic. 3. Comparison of theory and experiment for NaF-water
at 0°C.
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the region of high cathodic polarization. Although
Grahame’s C; curve was helpful in determining approxi-
mate values of the constants, their final values were
established by successive trial and comparison against
the experimental Cr curve. It was found that when good
agreement between theory and experiment was achieved
for one concentration, very nearly the same degree of
agreement could be expected on using the same con-
stants to calculate a curve for a different concentration
at the same temperature. This result again confirms
the usefulness of the simple Gouy-Chapman diffuse-
layer theory in the present situation up to high concen-
trations and justifies the assumed independence of
inner-layer properties of solute concentration.

GOF—
0
56} o 1oy OTIIN NaF - Water 25C
' SOLID LINES: Grohome Deta
52r DASH LINES:  Theoretical
a8 E, =—1.52x 10* volts/cm

b = 2.27x 10 (emsvoin)®
q = L7 x 10" emt/dyne

€ 2149

1
-0.4

-V, (voLTs)

4 RPN SR i1 PR WPUNG TSN NI IO
08 06 04 02 O -0.2 -06 -0.8 -LO -1.2 -14

F16. 4. Comparison of theory and experiment;for NaF-water
at 25°C.

Figure 2 illustrates the progressive improvement in
the agreement between theory and experiment which
can be achieved as various effects are included in the
theoretical treatment. In this graph, the solid lines
have been drawn from Grahame'’s data, and the
dashed lines show how the theoretical results deviate.
The solid vertical line near the center shows the
position of the ecm. For convenience in illustrating
various cases, the original data, represented by the
bottom solid curve, have been repeated several times at
6 uf/cm? intervals. This separation of experimental
curves for clarity will also be used in Figs. 3 to 7 and
in Fig. 11.

In Fig. 2, curve 1 has been fitted by the combination
of diffuse-layer theory and a constant inner-layer
capacitance whose magnitude was selected to give
agreement at the ecm. The great deviations over most
of the range show the crudeness of the assumption of
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F1c. 5. Comparison of theory and experiment for NaF-water
at 45°C.

constant C;. As indicated in the data box on Fig. 2,
curve 2 was calculated like curve 1 but with the
addition of the final or best amount of dielectric
saturation only. Note the symmetry of the dashed
curve around the ecm. This symmetry disappears in
curve 3 where the final value of E; has also been used
in the calculation. In curve 4, the final value of the
compression constant a has been included, but no
electrostriction occurs since n=7=0. Layer compression

60 - -
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521 DASH LINES: Theoretical
| E, =-1.52 x 10° volts/cm
a8l b = 1.76 x 10™-(cm/volt)?
010 N « =17 ox 16" cm2/dyne
S €= 12.65
cT
pF )
cm?
Al L 1 1 i L \ ! P L I
08 06 04 02 0 -02 ~0.4 -06 -08 -10 -1.2 -1.4
TV, (valts)
Fi6. 6. Comparison of theory and experiment for NaF-water
at 65°C.
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Fic. 7. Comparison of theory and experiment for NaF-water
at 85°C.

alone has improved the agreement between theory and
experiment considerably in the region of strong cathodic
polarization, but a much larger value of @ would be
required, as was the case in I, to achieve close agreement
in this region.

In curve 5, the values m=r=1 have been used
together with the value of o which gives the best fit
for this choice of r. Here, electrostriction is acting on
both the distortion and dipolar contributions to the
inner-region dielectric constant, and the best value of
a is necessarily smaller than that required in the
bottom curve where no dipolar electrostriction occurs
and r=0. The values m=n=1, =0 will be used here-
after. Curves 5 and 6 show that excellent agreement
between theory and experiment can be achieved but
that the agreement seems to be somewhat better when
r=0.

Figures 3 through 7 show the curve fitting results for
the principal temperatures Grahame used. They all
indicate appreciable discrepancy between theory and
experiment for the 0.001V curves in the intermediate
range of cathodic polarization. Grahame’s curve fitting
showed similar deviations at this concentration, and he
has ascribed them to experimental error,2%® which is
more likely for dilute solutions than for concentrated
solutions. There also seems to be a slight tendency
for the high-concentration theoretical curves to drop
off less rapidly for small cathodic polarization than do
the experimental curves. This result suggests that the
form of the function g( E) given in Eq. (19) and used in
the fitting does not allow fast enough dielectric satura-
tion in this region. One explanation is that the single-
image saturation results are most pertinent at low
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Vo’s, while the build up of more and more ions of a
single sign next to the inner region tends to make the
infinite image predictions begin to be more applicable
at higher potentials. The transition from one towards
the other would produce faster dielectric saturation
than (19) can accommodate.

The main discrepancy in Figs. 3 to 7 is the failure of
the theory to predict the experimental results over
much of the positive polarization region. It is clear
that some process not accounted for in the present
theory produces a considerable increase in over-all
capacitance as the electrode is made more and more
positive. One possibility is that the inner layer is far
more compressible for positive than for negative
polarization, a physically unlikely assumption. Another
is that rise in capacitance comes from pseudo-
capacitance!® associated with the discharge of negative
ions such as OH™. This explanation must be discarded
both because of the scarcity of OH~ ions in the solution
and because the characteristic frequency dependence
associated with pseudocapacity was not found by
Grahame and little discharge current was noted.

The most likely explanation seems to us to be that
the extra capacitance comes from the specific adsorption
of anions, possibly F~ ions. Hackerman and Popat,'%?
working with a platinum electrode, have mentioned
that the anodic process occurring at the extreme left is
oxygen, not fluoride, evolution. They suggest that
fluorine ions are not dehydrated and that the main
adsorption process in this case is that of OH™ ions. A
similar suggestion has been made by Wanklyn.i® In
addition to adsorbed hydroxyl ions, Watts-Tobin and
Mott35 also have suggested the possibility of adatom
formation at the mercury surface as a means of
explaining the anodic rise.

It is found that the character of the cations makes
very little difference in differential capacitance measure-
ments.” On the other hand, the type of anion makes a
profound difference, especially when the electrode is
positively charged.’%:1% There is general agreement
that all electrolyte anions but F— are specifically
adsorbed on mercury, and it seems somewhat unlikely
to us that there is a major difference in kind on going
to F—. The differences in Figs. 3 to 7 between theoretical
and experimental lines for high concentrations on
positive polarization suggest that the added effect
occurs for smaller electrode charges as the temperature
increases. If the discrepancies shown arise from specific
adsorption of anions in NaF, one may conclude that
such adsorption is relatively independent of concentra-

101 D, C. Grahame, J. Electrochem. Soc. 99, 370C (1952).

102 N. Hackerman and P. V. Popat, “Capacity of the Electrical
Double Layer and Adsorption at Polarized Platinum Electrodes,”
Tech. Rept. to the Office of Naval Research (1958).

103 R J. Watts-Tobin (private communication).

1043 C. Grahame, J. Electrochem. Soc. 98, 343 (1951).

105D, C. Grahame, M. A. Poth, and J. I. Cummings, J. Am,
Chem. Soc. 74, 4422 (1952).

16, C. Grahame, Z. Electrochem. 59, 773 (1955).
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tion; it occurs more readily at higher temperatures;
and it generally requires for its occurrence a higher
positive electrode charge than necessary for other
electrolytes.

The above temperature dependence follows, in the
present picture, in part from the decreased binding of
water molecules to the mercury at increased tempera-
tures. They are thus easier displaced by anions at
higher temperature, and the strong specific chemi-
sorption of the anions replaces the largely physical
adsorption of water molecules. On identifying the
added capacitance as arising from specific adsorption,
its approximate independence of electrolyte concentra-
tion is more difficult to explain and has been one of the
reasons previously adduced against specific adsorption
of F~. On the other hand, such independence is a
natural consequence of hydroxyl-ion adsorption, but
the scarcity of OH~ ions in the neighborhood of the
mercury drop during its growth makes such adsorption
seem unlikely at first. However, if the OH~ ions come
from inner-layer water molecules which lose hydrogens,
a sufficient supply is directly available and OH~ ion
adsorption becomes a possible mechanism. Parsons'™
reports that the anodic rise is essentially unchanged on
varying the pH from pH 7 to 11; but there is a large
increase above pH 11. This would indicate that the
specific adsorption of OH~ ions, if it occurs, is also
independent of the bulk concentration of these ions.

At the ecm, the present work requires that there be
space-charge mneutrality. As soon as the electrode
acquires a charge, space charge will build up in the
diffuse layer, and the layer of ions nearest the water
molecules of the inner layer will be made up more and
more of a single-charge type. The magnitude of the
total unbalanced charge, or space charge, in the diffuse
layer is approximately an exponential function of
potential but only depends on the square root of elec-
trolyte concentration. If we make the likely assumption
that specific adsorption of F~ is mediated most strongly
by the concentration of anions in the space-charge
layer next to the inner region, then for any appreciable
positive potential it is easy to see why the magnitude
of any specific adsorption of this ion, as measured by
added capacitance, should depend strongly on potential
but only weakly on bulk concentration. In fact, several
plausible statistical models® lead to inner-layer proper-
ties which even in the presence of specific adsorption
are potential sensitive and concentration insensitive.

Some clue concerning the dependence of the specific
adsorption capacitance contribution on charge or
potential may be obtained by considering the deviations
of theory and experiment which occur in the positive
polarization regions of Figs. 3 to 7. This problem will
only be considered qualitatively at present. When an
ion is adsorbed, it replaces a water molecule, and thus
changes the average inner-layer capacitance, first

107 R, Parsons, Proc. Roy. Soc. (London) A261, 79 (1961).
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because of the missing water molecule, and second
because of its own contribution. In addition, the
capacitance of the diffuse layer is changed slightly,
but more important, the correct law for combining
these two capacitances to arrive at Cr is changed. If
a fraction (1—f) of the charges in solution is in the
inner layer, the proper equation for the static
capacitance is

Crr=L(V+/g)+(Vo/9) T'=L(Vo/@) +H(Vo/fg) T
=[(Ce) (€)1,

In a similar manner one obtains for the differential
capacitance,

V. ave} [avi Talfp) @ T
CT_[qudq] —{dq Tf[ av, qua] }

={Ci+f[Co—q(df/aV2) T}

We see that even neglecting any effect of specific
adsorption upon Cs, Cy increases with specific adsorp-
tion by two mechanisms: the increase in C; from the
adsorbed charge and the departure from the series-
additivity law. Since ¢df/dV, is probably negative, the
latter effect is accentuated. Because of the implicit
dependence of f on ¢ and the total applied pressure
differential, the actual application of the above equa-
tions requires a detailed theory of the specific adsorption
process.?

If the final anodic rise in differential capacitance is
attributed to specific adsorption of anions, the hump
which appears at small anodic potentials at the lower
temperatures may be ascribed to the conflicting effects
of adsorption and dielectric saturation. As the anodic
potential is decreased towards the ecm, electrode
charge and specific adsorption decrease, causing the
over-all differential capacitance to fall. At the same
time, the inner layer becomes less dielectrically satu-
rated, tending to make the over-all capacitance rise.
The proportioning of these two effects can lead to the
hump, and its disappearance at high temperatures can
be explained by increased adsorption and decreased
dielectric constant and saturation parameters ¢ and b.
It is possible that the above explanation also applies
to other, even larger humps found® with other solutes
such as KNOs.

It will be noted that the same values of E, and «
have been used for all temperatures in Figs. 3 to 7.
The values of & used for temperatures above 0°C were
obtained from that found at 0°C by applying the 72
dependence which follows from the usual dielectric
constant theories, as shown in rows two and three of
Table I. The only constant which was considered
disposable in fitting the higher-temperature results was
a. Little agreement with experiment could be achieved
if @ was taken proportional to 71 or 771 (see Table I);
so the value of a for each temperature was chosen which
yielded agreement at the peak of the cathodic hump

(47)

(48)
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Fic. 8. Theoretically derived inner-layer differential capaci-
tance vs electrode charge for three temperatures.

for the 0.01N curve. The resulting values of ¢ are
quite consistent and indicate a temperature dependence
with an exponent of approximately —2, as discussed
earlier. No other ¢ and & temperature dependence
could be found which would yield good agreement
with experiment over the entire range of temperature
here covered. The consistency of agreement between
theory and experiment is surprisingly good at all
higher temperatures for fitting with only one disposable
constant determined at only one point.

In most curves of Figs. 3 to 7, there seems to be a
slight tendency for the theoretical results to lie above
the experimental for extreme cathodic polarization.
The deviation is usually hardly greater than experi-
mental error and would have been even smaller had
dielectric saturation in the diffuse layer been taken into
account, but it may indicate that a somewhat larger
value of m than unity would be a better choice.

Once good agreement between theory and experiment
is achieved, the dependence on potential, charge, or
field of the various internal parameters of the system
may be plotted. Figure 8 shows the dependence of the
inner-layer differential capacitance on electrode charge
for three temperatures. These results, in conjunction
with diffuse-layer theory, lead to the agreement with
experiment shown in the earlier figures. This agreement
is poor for appreciable anodic polarization; therefore,
in this region the theoretical charge ¢ in Fig. 8 differs
from the experimental electrode charge obtained from
the experimental differential capacitance by integration.
Over the rest of the range, from about ¢= 42 to —25
uC/cm? where the agreement is good, the theoretical
and experimental charge values virtually coincide. In
this range, the curves of Fig. 8 agree well with the
corresponding Grahame curves?® It is believed the
present results, obtained from computer curve-fitting,
may be slightly more accurate than Grahame’s in the
cathodic polarization region.

Figure 9 shows how another derived quantity, the
potential of the outer Helmholtz plane, varies with
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applied potential. The former potential is approximately
the same as the zeta potential of the electrokinetic
theory.¢ It will be noted that V, begins to saturate
before very high over-all potentials are applied. As V,
increases, C, increases rapidly and limits the potential
Vs across the diffuse layer. The deviation between
theory and experiment for anodic polarization will
cause the anodic V. values shown in TFig. 9 to be
somewhat uncertain, but the degree of error or un-
certainty here is far smaller than that arising from the
same cause in Fig. 8 because the diffuse layer capaci-
tance and V¥, are much less sensitive to such deviations
than is Ci. The present theoretical 0.1V curve is in
good agreement with Grahame’s'% corresponding curve
for KF.

Figure 10 illustrates the dependence on electrode
charge and on the field E; of various inner-layer
parameters derived from the 0°C curve fitting. Rather
than plot the pressure directly, the part of it which
depends on dielectric constant and electrostriction has
been shown. The dotted lines indicate the behavior
when a=0, for which there is no layer compression or
electrostriction. In this case, the normalized pressure
curve becomes identical with the ¢ curve. The scale for
the compression parameter A has been increased by a
factor of 10, as indicated, in order to magnify its field
dependence.

At the maximum internal field of about 3X 107 v/cm,
the layer has been compressed by about 109, and the
electrostatic pressure has reached about 6000 atm. In
I, a maximum compression of about 209, and pressure
of 3000 atm were found. The reason for the difference
is that the inclusion of electrostriction in the present
work allows curve fitting with a much smaller value of
a since less of the final rise in capacitance need come
from direct layer compression.?» The effect of electro-
striction shows up most strongly in Fig. 10 for the x
curve, but it also has an appreciable effect on the ¢
and pressure curves at high fields. In particular, the
final rise in the normalized pressure curve, which is just
apparent at the highest fields, comes from the electro-
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tential ¥, for four concentrations.
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strictive increase in ¢. At high fields this increase
begins to outweigh the saturation decrease because of
the positive feedback factor discussed after Eq. (28’).
Even at the highest fields this factor is small, however,
and the necessary iteration converges to a final value
in four or five cycles on the computer.

Accurate curve-fitting of the methanol-solvent results
was more difficult than that for water solvent because
data were available for only 25°C and because no
anodic hump occurred. The absence of this hump makes
the determination of F; very uncertain, and the
resulting uncertainty has a direct effect on ¢ as well.
Figure 11 shows the results of fitting the present theory
to the methanol curves using e, =4.5 and dy=5.4 A. It
was found that a good fit near the ecm could be obtained
with the same Eg value used for water, and this is the
value employed for the results of Fig. 11. As close a
fit could also be achieved with either a considerably
larger or somewhat smaller £, however, and the
present value of @, 7.5, must also be considered quite
approximate.

Because of the smaller N, and g, for a methanol rather
than water monolayer, theoretical calculation of ¢ and
b, such as that summarized in Table I for water, yields
smaller values in the methanol case. Curve fitting
leads to a considerably larger & value for methanol
than for water, however, in qualitative agreement with
Malsch’s experimental results for methanol and water.”
Note that the value of & found for the methanol
monolayer, 11X10~“(cm/v)? is still smaller than
Malsch’s rather uncertain result for bulk methanol.

Again it is very probable that the final anodic rise in
the differential capacitance comes from anion adsorp-
tion, as in the aqueous case. Grahame®® presents
capacitance curves in methanol solvent with Cl,
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NO;~, and F~ as anions. The anodic-rise parts of the
capacitance curves are extremely similar in these
cases, with the main difference being that the rise
occurs at higher anodic potentials as the solute is
changed from NH,Cl to NH,NO; to NH,4F. If the rise
in KF from anion specific adsorption began in the low
cathodic polarization region rather than in the anodic
region or at the ecm, which is certainly a possibility,
the fitting of much of the cathodic drop in capacitance
by dielectric saturation, as in Fig. 11, would be in-
correct, and the negative sign of Eo here used might
be wrong as well. In this case, a much smaller value of
b in better agreement with theoretical predictions,
could be employed. In general, if specific adsorption
effects can be separated from saturation effects, as was
the case for water solvent at 0°C, much more accurate
determination of Eq, a, and & is possible than if such
separation cannot be carried out. Because of the low
freezing point of methanol, differential capacitance
measurements using it as solvent should be possible
at much lower than 0°C and, because of the increase
in ¢ and & and decrease in specific adsorption as tem-
perature is reduced, a hump should appear at sufficiently
low temperature, and this should allow the above
separation to be carried out far better than is possible
with the 25°C data.

The ratio between the initial isothermal compressi-
bilities of bulk methanol and bulk water is 2.75 at
25°C, while that between the o’s found here for the
inner layer is about five. One possible reason for this
discrepancy is that a considerable part of the bulk
values arises from free-volume compression; thus, the
ratio of individual molecular compressibilities can be,
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and in the present case is likely to be, bigger than the
ratio of bulk compressibilities.

The value of a used in Fig. 11 still seems higher than
it should be, however, since it leads, in the very approxi-
mate fashion discussed earlier, to an actual methanol
molecule compressibility somewhat exceeding that of
bulk methanol. It may be that some of the final cathodic
rise of the curves of Fig. 11 stems from other causes
than compression and electrostriction. Minc and
Jastrzebska'® have found considerable dependence of
this rising region in methanol solvent on cation species,
with K+ giving the largest effect. It is possible, as
suggested by these authors, that this ion is specifically
adsorbed in this region, and that therefore its contri-
bution to the capacitance should be removed before
fitting with compression and electrostriction effects.
Such removal would, of course, result in a lower value
of a.

Cation adsorption, if present, is certainly of more
importance for methanol than for water solvent, but it
still may have some effect on the high cathodic polari-
zation portion of the water-solvent curves. We believe
that specific adsorption of cations and possible water-
substitution effects are sufficient to explain the large
magnitude of « found for methanol and the deviations
which occur at high cathodic polarization between
theory and experiment. Were data available for which
the above effects had been or could be eliminated, it
might also turn out that the remaining compression
and electrostriction processes would be best represented
with a value of m greater than the unity value used in
Fig. 11. With the value of « used, maximum theoretical
Pg is about 4000 atm and maximum inner layer
compression is about 309;. At least the last value
would certainly be reduced if the true value of «
were smaller, as is likely.

Grahame?® has explained the anodic hump found with
NaF in water solvent as arising from the increase in
thickness of an ice-like layer next to the electrode as
the temperature is lowered. Apparently, the thickness
of this layer must be assumed to vary with electrode
charge as well, being greater for anodic than for

( ‘0505). Minc and J. Jastrzebska, J. Electrochem. Soc. 107, 135
1960).
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cathodic polarization. Since the hump does not appear
in methanol at 25°C, Grahame assumes that there is
no solid-like layer for this solvent. In the present
theory, a variable-thickness ice-like layer need not be
introduced. The hump finds a more natural explanation,
we feel, in the interplay between dielectric saturation,
including the saturating effect of anisotropic solvent-
molecule adsorption, and specific adsorption of anions.
The inner layer considered here is not ice-like in its
structure since a hexagonally close-packed monolayer
cannot approximate to the three-dimensional tetragonal
structure of ice. On the other hand, like ice, the mono-
layer, whether made up of water or methanol, is
assumed to have some rigidity. Note that even were
the inner region several monolayers of water thick and
approximated bulk behavior, the pressure in it would
not be sufficient to produce ice VI or VII at 25°C, where
traces of the hump still remain for NaF in aqueous
solution.

It is believed that the present work is applicable to
all differential capacitance measurements with ideal
polarized electrodes in polarization regions where no
specific adsorption occurs. Fitting of theory to experi-
ment in such cases allows solvent dielectric saturation
and electrostriction effects to be separated and quanti-
fied, probably the only technique for which this is
possible in high field-strength regions. Since the
measurements are essentially quasi-static, uncertain
dispersion and adiabatic heating effects which may
trouble the interpretation of results of pulse methods
of dielectric saturation™ are entirely absent. It also
appears that at least crude determination may be made
of the compressibility of individual solvent molecules.
Finally, the present theory may serve as background
for a more complete theory of the double layer which
includes a quantitative treatment of specific adsorption.
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