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After a brief survey of methods of representing the transient response of a distributed linear system, a
general analysis is presented of the temperature dependence of relaxation times of a thermally activated
system. It is assumed that either the pre-exponential factor 74 (or its inverse, the vibrational frequency va)
or the activation energy E may be separately distributed or that they both depend linearly on a structure
factor 8§ and so are similarly distributed. Further, 74, E, and parameters of their distributions are taken
temperature independent. A two-parameter, generalized, truncated exponential probability density function
is chosen for the distribution of § and transformed to yield a power-law distribution for G(7), the over-all
relaxation-time distribution function. Expressions yielding the time and temperature response of the system
are then derived from G (7). The specific transient response considered is that following the imposition of a
constant forcing function at ¢=0and may represent the charge and current response of a dielectric system
after application or removal of a constant voltage, the strain and rate-of-strain response of a mechanical
system after constant stress is applied or removed, or the stress and rate-of-stress response on application and
maintenance of a constant strain. Representative results are found to agree quantitatively or qualitatively
with available transient and temperature responses for a wide variety of materials under electrical or me-
chanical stimulation. In particular, the current transient response or stress relaxation response is constant
for measuring times less than the shortest relaxation time of the system, then exhibits one or two regions
with /~0+¢) behavior, and, finally, decreases very rapidly when the measuring time exceeds the longest time
constant of the system. The theory leads to specific possibilities for the temperature behavior of p; and to
reasons why it is usually found to be less than unity in magnitude. Finally, conditions are analyzed for which
the time-temperature superposition law of rheology applies.

I. INTRODUCTION The Wagner®® DRT, however, was selected directly on

the basis of physical plausibility. Finally, a number of
DRT’s have been obtained by induction from the form
of the transient response of the system.?-® In spite of
much consideration of various kinds of RTDF’s in
prior theoretical work, very little attention has been
given to the temperature dependence of their param-
eters and the resulting effect on temperature dependence
of system transient and frequency response. Such
analysis is one of the main aims of the present work.

Although many dielectric and mechanical relaxation
measurements point to relaxation frequencies which
obey an Arrhenius or closely allied equation and are thus
associated with a thermally activated process, of the
above distributions only that of Wagner can be made
consistent with a distribution of activation energies
(DAE) or with simultaneously present distributions of
activation energy and pre-exponential factor in an
Arrhenius equation.*! However, the Wagner RTDF is
a distribution symmetrical in In(7/7¢), where 7, is the
most probable relaxation time, and cannot, therefore,
represent data well which require an unsymmetrical

ANY approaches have been used to deal with a
linear system whose measurable response extends
over a relatively wide range of times or. frequencies.
Since a detailed microscopic theory leading unambigu-
ously to a continuous or discontinuous distribution of
relaxation (or retardation) times (abbreviated hereafter
as DRT) is usually unavailable for all but the simplest
systems, it has been customary to introduce a relaxa-
tion-time distribution (RTD) heuristically. Most such
phenomenological distributions involve a single shape
parameter which is adjusted to yield the best fit be-
tween theory and experiment. In the present work, we
only distinguish between - retardation and relaxation
times and systems when necessary and shall usually use
relaxation as the inclusive term.

Three different methods have been used to derive
forms for phenomenological relaxation-time distribu-
tion functions (RTDF). These methods differ only in
that initial attention is focussed on the frequency, the
time, or the relaxation-time domains. Results obtained
in any one of these domains can be transformed to the

other.! The Fuoss—-Kirkwood,? Cole-Cole,® and David-
son—Cole! distributions were derived by introducing a
disposable parameter into frequency-response functions.

* Presented in part at the Baltimore, Maryland annual meeting
of the Society of Rheology, 29 October 1962.
! J. R. Macdonald and M. K. Brachman, Revs. Mod. Phys,
28, 393 (1956). -
( 2 R.) M. Fuoss and J. G. Kirkwood, J. Am. Chem. Soc. 63, 385
1941).
3K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
( 4;).) W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484
1951).

distribution. Therefore, in the present work we consider
the transient response associated with another® simpler
RTDF which is also consistent with a thermally acti-

§ K. W. Wagner, Ann. Physik 40, 817 (1913).

8W. A. Yager, Physics 7, 434 (1936).

7G. M. Voglis, Z. Physik 109, 52 (1938).

8 J. R. Macdonald, J. Appl. Phys. 32, 2385 (1961).

9 J. R. Macdonald, J. Chem. Phys. 36, 345 (1962); Bull. Am.
Phys. Soc. 6, 449 (1961).

0], R. Macdonald, Physica 28, 485 (1962).

A, S. Nowick and B. S. Berry, IBM J. Res. Develop. 5, 297,
312 (1961).
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vated process, which can be either symmetrical or un-
symmetrical, and which can yield results in good agree-
ment with much experimental data. The frequency
response associated with the present distribution will be
discussed in a further paper.”? _

In the next section, a general survey of distributed,
linear system transient response is given, followed by a
discussion of the temperature response of relaxation
times for a thermally activated system. Various possi-
bilities for distributed character are subsumed in a
single representation of considerable generality, and
specific transient and temperature response functions
are derived and discussed after selection of a physically
reasonable probability-density distribution function.

II. GENERAL TRANSIENT RESPONSE

In the present work, the transient response is calcu-
lated for a dielectric system, but the results apply as
well to transient effects in many other linear systems,
such as mechanical creep and stress relaxation. A de-
tailed comparison between such systems has been given
elsewhere.”® Let us now consider a guarded capacitor
whose capacitance is C,» when its dielectric is the mate-
rial to be measured and is C, for an air or vacuum
dielectric. Let ¢, be the dielectric constant of air, and
es and ¢, be the values of the real part of the dielectric
constant of the material studied at limiting low (static)
and high frequencies, respectively. Then the current
which flows in the initially uncharged material capacitor
when a voltage V (f) is applied at t=0 will be, from the
superposition principle,!3

-

where 4 (¢) is here the indicial admittance of the system
exclusive of instantaneous-response terms and is zero
for 1<0, uo(¢) is the unit step function, and e= (e,/C4)Chn.
The quantity A4 (¢) will be related to a RTDF later. The
charge ¢(¢) is just

av(x)
P A(t—x)dx], 1)

4= / i(@)d. @)

Although quantities such as i(¢), 4 (), and ¢(¢) depend
on temperature as well as time, such full dependence
will usually not be explicitly indicated.

We shall be primarily interested in an input voltage
of the form V(t)=Vwmo(t), where V4 is a constant
voltage. Its introduction in (1) leads to

i()=ViLCad () (Ci—C)A ()], )

where C, and C, refer to the capacitor with material

dielectric and 6(¢) is the Dirac delta function, formally

equal to d[uo(t)]/dt. Equation (3) shows that A4(¢)
127, R. Macdonald (in preparation).

J. R. Macdonald and C. A. Barlow, Jr., Revs. Mod. Phys.
(to be published),
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specifies the characteristic transient response of the
system when the input is a constant voltage Vg applied
suddenly at {=0. Although there will usually be some
temperature dependence of (C,—C,), this depend-
ence'*'® is independent of A (f) and the normalized
RTDF and can frequently be separately measured. The
charge in the present case is

9=V Catto (1) + (Co— C ¥ (1) ], 4)

where

)= / A=)z (5)

and ¢ (#)=0 for all <0.
Since ¢(t)=Cn())V(¢), (4) shows that for step func-
tion response
Cu(t)—Cy
—uo(t) =

s ) €5 €p

(D) — e
( Uo (t)) (6)

v()=

where () is the time-varying effective dielectric con-
stant. Note that ¢(0)=0 and ¥ ( «)=1. Thus, the final
charge is C,Vo. The quantity ¢ is called the creep
retardation function in the mechanical retardation case
and is a measure of the creep strain under constant
stress.®3 A further quantity, ¢()=uo(?)—¢ (), may be
defined which will represent the relaxation, or approach
to equilibrium, of a retardation system on removal of a
stimulus such as constant stress after equilibrium under
the stimulus has been attained. When a relaxation
system is considered, however, ¢ () =u,(t)— ¢ (t) may be
used to describe, e.g., the relaxation of stress after the
application and maintenance of constant strain. When
both strain retardation and stress relaxation measure-
ments are made on the same material, the ¢ representing
relaxation of the strain after removal of stress is related
to but not equal to that representing the relaxation of
stress under constant strain. In these two situations, the
distribution of retardation times is not equal to the
distribution of relaxation times, and thus the ¢’s derived
from them are different.

Sometimes dielectric measurements are made by
applying a ramp voltage V(f)=atu,(t), where « is a
constant.'® In this case, Eq. (1) leads to

i(t)=a|:cwu0(t)+ (Ca‘—cw)‘/’(t)]- (7)

Although the dimensions are different, this result is
formally equivalent to (4). Since it is frequently more
convenient to measure a current than a charge, the
ramp-voltage method is often used in place of charge
measurement to obtain the function ¥(f). In creep
measurements ¢ (#) can, of course, be determined
directly from measured strain under constant load.

1 J. R. Macdonald and C. A. Barlow, Jr., J. Chem. Phys. 36,
3062 (1962).
( 1956 ]13) E. Read and G. Williams, Trans. Faraday Soc. 57, 1979
1 . :
18 D. W. Davidson, R. P. Auty, and R, H. Cole, Rev. Sci. Instr.
22, 678 (1951).
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In actual measurements of dielectric transient re-
sponse, the discharge current (after full charging) is
often measured instead of the charging current. When
the system is linear and there is no dc conduction or its
effect is subtracted from the data, the magnitudes of
these currents are equal at equal times after the begin-
ning of charge and discharge, and we may write®
Aa)=—A4.(t) for >0 and ¢s(t)=ue(t)—y.(t), using
the superscripts d and ¢ to indicate discharge and
charge. In many experiments, however, the dielectric is
charged at constant voltage for a finite time #o, then
discharged through essentially a short circuit. In this
case, the applied voltage is V (£)= Vo[ o (t)—uo(t—10)]
and the corresponding discharge current involves the
function

Dy()y=A(1)—A(i—1) )

instead of A{f). In order to evaluate the effect of a
finite charging interval, it is of interest to compare the
discharge current after such a finite charging period to
that for a infinite interval (or the charging current
starting from a completely uncharged condition). If we
now measure time from the beginning of the discharge
and change the sign of Dy(Z) to allow direct comparison
with the charging current of (3), we obtain the function

D(t)= A(t)— A (t+to)uo(t), ®)

which is compared directly with A4 (f).

In the limit of short charging times, the applied
voltage begins to approximate an impulse or non-
normalized delta function. Therefore, the response of
the system to V (£)=A8(f) is of interest. From (1) the
current response is

i(8)=Ad[Cod’ ()+ (Cs—C){dA(t)/dt} ],  (10)

where 8'(f) is the first derivative of the delta function.
Thus, d4/dt rather than A (f) is involved in the response
in this case.

III. TEMPERATURE CONSIDERATIONS

In the present analysis, we shall be solely concerned
with thermally activated relaxation processes.’?*1% In
previous work,” it has been shown that physically
reasonable assumptions concerning the temperature
dependence of the potential barrier height involved in
an individual relaxation process lead to the frequently
found experimental situation of a temperature inde-
pendent heat of activation, or activation energy E and
entropy increment AS=E/f§,, where 8, is an absolute
temperature usually above that experimentally possible
without phase or structure change.’® On introducing the

17 C. Zener, Imperfections in Nearly Perfect Crysials, edited by
W.2§3%ckley e al. (John Wiley & Sons, Inc., New York, 1952),
PD. Lazarus, Solid State Physics, edited by F. Seitz and

D.l'%‘sumbull (Academic Press Inc.,, New York, 1960), Vol. 10,
p. 115,
18 Note added in proof. The relation AS/E=constant has also

been derived by a different method and considered in more detail
by A. W. Lawson [J. Chem. Phys. 32, 131 (1960)].
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normalized activation energy §= E/k@,, one then finds'
that an individual relaxation time r may be expressed as

(11)

where n=(6,,/6)— (8,/6y), 8, is an arbitrary normaliza-
tion temperature, and 7,=ps " is an attack time or
inverse vibrational frequency, the limiting value of
7 when 6=16,.

Although 74 may sometimes be a slowly varying
function of temperature,>'*¥ for concreteness we shall
here take it as temperature independent. Both 74 and
& may be distributed, and we make the physically
plausible assumption? that when these quantities are
themselves temperature independent, their distributions
are also temperature independent. Let us designate the
extreme values of 74 and & which appear when they are
distributed as 741, 7a2, and &, 83, respectively. We may
next define r¢,= (raira2)? and 8,= (814 82)/2. When 74
and & are not distributed, their values are 74, and &,
since in this case 741=742= 74, and &;= 8= ..

We shall only be concerned with the cases where
either the variable £=In (r4/14.), or &, or both de-
pends linearly on a single, temperature-independent,
distributed structure variable 8, whose range extends
from $; to 8. In any of these cases, where & has a
specific value, 8§ will have a fixed or related value. We
may thus write from (11)

r=14exp(n8),

(12)

where 7. is some “central” relaxation time satisfying
7.= (T1m2)f and

Te= Tde CXP (ﬂgc),

Ti= Tdi €XP (11 81) (13)
fori=1, 2,
The combination of {(11) and (12) yields
s=In{r/r)=L+9(6—8.). (14

Let us now take®!! £=a 468 and E=as+ 528, where
the o’s and §’s are temperature-independent constants.
Substitution in (14) and the use of s,=0 yields

s=[B1+78:][8—8.]
=vy'x, (15)
where x=(8—8.), and 8,=—a3/B81 when B15%0. Note
that 8, and B, may be individually positive or negative.
Without significant loss of generality, we shall take
B2>0 hereafter. When 8,>0 and 8,>0, £ and & will
then be distributed similarly, but when B8:>0 and
B:1<0, the variable —£=In(vs/v4.) and & will have
similar distributions.”® Since 82> &, the choice 8:>0
requires that § also be greater than or equal to $; when
8270, and we therefore always take 8,2 81.
When 8,=0, r4=r74, and 74 is not distributed.
Similarly, when 8;=0, §=§, and & is not distributed.
When 8270, the case of greatest interest and the one

1 R, H. Doremus, J. Chem. Phys. 34, 2186 (1961),
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we consider in most detail, we may rewrite (15) as

s=[(8y/B2)+n][ 6~ &.]
= (By)'[E—~8.]=0[6—-&.],

where ¢ is a new inverse temperature variable. By con-
sidering all temperature dependence in terms of ¢ in-
stead of #,/6, we can include all combinations of (8:/82)
and n automatically and change from one set of condi-
tions to another by a simple translation of results along
the o axis. The combination of (12) and (16) finally
yields

(16)

=14, exp[ — (81/82) 40 8], amn

When y= o, either because e=0 or because 8,=83:
=0, Eq. (15) shows that r=7,=7s=17,=7.,; there is
then only a single effective relaxation time in the
system and it exhibits simple Debye dispersion. When
8270, the condition ¢=0 is only physically realizable
when the corresponding temperature 6, satisfies 6,,>0,
where 8, is defined by (8./8.)= (6./0,)— (81/82). The
value of 7, at this temperature is then

Tew™ Tde EXP (nx 66) = Tde exp[_ (ﬂl/ﬁ2) 80].

For calculation purposes, it is desirable to define a
normalized time variable ¥={/7.. However, this quan-
tity depends on temperature as well when §,70; thus,
to allow convenient comparison between theory and
experiment we may define the temperature-independent
time variable T=t/r.,,=RY, where R=1./7., and 7.,
is the value of 7, from (12) evaluated at §=6,. When
0=0,, oc=0,=(B1/B2)+n,, where 5,=1—(6,/6,). The
quantity R may be written

R=exp[ (6,—0)8./6]=exp[ (¢s—0.)8.],

which depends on temperature only through ¢ when
B27#0.

Finally, let us introduce the normalized relaxation-
frequency variable z=r./r=exp(~s). The relation!-8
between 4 (¢) and a RTDF G(r) may now be expressed
in terms of the above variable as

A(t)=A('rcY)

Zmax+
=uy(¢) / 77'G(r.21) exp(— V3)dz, (20)

(18)

(19)

where Zmin and Zmax are the smallest and largest values
of z, given by 7./7sand 7./7,, respectively, for ¢>0 and
interchanged for ¢<0. The limits are written Zmax+
and Zmin— to include the full contribution from any
d-function terms present.”® An important temperature-
independent quantity is 7= exp[sgnd(go— g,)/2], where
6=p; and g=8& when B0, while §=8;, g=£& when
B2=0. When r. is taken as (7179)}, Zmax™=7Zmin!
= (r3/71) 14 equal to 7/v! when ;50 and to  when
B2=0. Here, sgny=+y/|v| ; sgn0=0. Thus 72 is the ratio
of maximum to minimum time constants of the system
when 8,=0and is this ratio at the temperature specified
by ¢=1 when §,70.
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Throughout the present work, we use a RTDF
normalized to unity. The normalization condition may
be expressed as

Zmaxt
‘rc/ 272G (rg dz=1. (21)

min—

This condition, plus Eq. (5), leads to
1/,(5):,[,(1—0}7),

2max+
= uo(t)[l -7, f 272G (rzY) exp(— Yz)dz] ,

min—

=uy(t)—o(). (22)
IV. SPECIFIC RELAXATION-TIME DISTRIBUTION

In this section, we obtain a RTDF by first selecting
a reasonable probability density function for the
normalized structure variable 8. Pearson has derived a
large number of types of probability distributions, which
are summarized by Elderton.? One of the most interest-
ing is the gamma distribution, which includes the x2 and
exponential distributions as special cases and has been
used®! as a statistical model for the life-length of mate-
rials. Here, we use the exponential distribution, modify
it slightly for greater generality, and apply it over a
finite range. Some further discussion of the physical
applicability of the exponential distribution for the
present situation and for life testing has been given
elsewhere.1022

If 8; and 8; are minimum and maximum values of
8, respectively, the condition 7.= (r172)} leads to
8,= (81+82)/2. We now pick the probability density of
xr=8—38§, as

exp(—Awx) x:<x<0

(x)=N
2:(®) exp(—Asx) 0<x<xe (23)

=0 x<xy, x> %,

where & is the normalization factor for normalization
to unity and A; and \, are temperature-independent
constants which need not be equal. When they are equal
and nonzero, one obtains the ordinary exponential dis-
tribution for a finite range. When they are both zero, (23)
reduces to the well-knownboxdistribution for whicheach
value of 8 between 8, and §; is equally probable.? The
present introduction of separate A\, and \; values allows
p2(x) to be made symmetrical around x=0 by taking
A2= —A,. Further, as becomes evident later, the present
choice maylead totransient response of theform ¢ with

» W. P. Elderton, Frequency Curves and Correlation (Cambridge
University Press, Cambridge, England, 1938), 3rd edition.

“Z. W. Birnbaum and S. C. Saunders, J. Am. Stat. Assoc. 53,
151 (1958).

2D. J. Davis, J. Am. Stat. Assoc. 47, 113 (1952).

* A. Matsumoto and K. Higasi, J. Chem. Phys. 36, 1776 (1962);

a number of further references concerning the hox and generalized
distributions are given in references 9, 30, and 31.



542 J.

two different values of # in different time intervals, in
agreement with considerable experimental data.”.2¢-28
Finally, it may be used to approximate or sometimes du-
plicate the wedge-box distribution frequently employed
in describing the mechanical relaxation of polvmers,?-%
It is worth pointing out that although (23) is quite
general, it is not as general as possible for the present
form of dependence. The present form is restricted by
taking the point at which the two parts join at $=8§,
= (8:+82)/2. More generally, this point can occur any-
where between 8, and 8,, and one could even interpose
a region of zero probability density between the two
separate nonzero parts. In the interests of simplicity and
minimization of disposable parameters, we have dis-
pensed with such additional freedom herein. Further
generality could, of course, also be achieved by splitting
up p.(x) into more than two nonzero parts. The intro-
duction of many \; values and transition points would
allow fitting of more complicated experimental curves
but is usually unnecessary.

Next, we take f(s) as the probability density for the
logarithmic variable s. Then, we may write G(7)|dr|
= f(s)|ds| = p.(x)|dx|. This result, together with (15)
and (23) then leads to

1<2586 (v>0)
gltp

b<z<1 (y<0)
a<z<1 (v>0)
1<z2<a (y <0)
5 CZininy 5> Emamy (24)

G(r)=G(r:z")=B(7caR)™

LZH”

=0

where B=|vy|N,b=a"=7,/r1=10/7,= (1o/11)}=roomb2

or "1 when 8,=0, and

B=sgny{p: (b= 1)+ ps (1—a??)}1
= [y| DAt (s — 1) 4 Ay 1 (1— b -1 (25)

=07, (26)
pi=\i/ (B14+Bm) =Nz, (27)

where £, is temperature independent, as is the term in
square brackets in (25) which is also always greater than
zero. Note that when B:=0 with 8,50, p;=¢,, while
pi=£;/c when B,7%0. Also, when 82540 and p;=ps=0,
B=[|o| (8~ &)

By consideration of the form of p.(x) or G(r), it can
be shown that these quantities approach & functions in
certain limits.® Results for G(7) are presented in
Table I. Note that infinite values of p; arise in the first

# E. von Schweidler, Ann. Physik 24, 711 (1907).

%K. S. Cole and R. H. Cole, J. Chem. Phys. 10, 98 (1942).
(1;'35. Gerson and J. H. Rohrbaugh, J. Chem. Phys. 23, 2381

*’R. J. Munick, J. Appl. Phys. 27, 1114 (1956).

8 F. Cardon, Physica 27, 841 (1961).

# A. V. Tobolsky, J. Am. Chem. Soc. 74, 3786 (1952).

% A. V. Tobolsky, Properties and Structure of Polymers (John
Wiley & Sons, Inc., New York, 1960), p. 123 ff.
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TasLE L. Values of G(r) in certain limits. (— o <L <),

0<[y| <
P P2 G(’)
—L —» S(r—r3)
2 — %[5(r—~r1)+5(r—72)](‘\'|= — tu)
—_ S T_Tc)
o« 1 §(r—m1)
y=, [p=w» 8(r—Tew)

four cases because a corresponding \; is infinite; in the
last case, the condition y= « leads to infinite | p;].

The present power-law distribution of Eq. (24) may
be used in connection with either a retardation or
relaxation situation,'™ but even with p;= ps=p has not
previously been considered®3!32 in detail for a finite
range and for arbitrary or temperature-dependent p;. It
is quite similar, however, to the truncated gamma dis-
tribution in z previously used to describe creep and
mechanical dispersion in solids.! This distribution,
which we here term the Karapetoff-Voglis?* distribu-
tion (the K-V distribution) after those who first applied
it for dielectric dispersion applications, becomes, when
truncated at Tp.x=7s,

G(T)ZG(Tcz_l) = (TcnR)_-l[:F (_ V,a)]’le“zzl—”
a<z< ®
z<a,

=0 (28)

where » is here a positive or negative shape parameter
and I'(—»,a) is the tabulated * incomplete gamma func-
tion. The presence of the exp(—z) factor keeps the
above result from being made entirely consistent with
a temperature-independent distribution of § or of & and
£. However, it acts as a built-in truncation for >3 or
so. Thus, the effective range of 7 is about (7./3) < r<rs.
It is evident that (28) will therefore yield results at a
fixed temperature very similar to those of (24) for the
special case p1=ps=p=—». :

In (28), truncation at 7= 7. Or some similar change
is necessary®® to permit normalization for positive as
well as negative values of ». The untruncated K-V or
gamma distribution in z has also been used to describe
the response of polymers in their linear range.?¢ Because
even the truncated K-V distribution is only consistent
with a distribution of £, it is preferable to use the dis-
tribution of (24) in place of it whether £, &, or § and £

31 K. Higasi, Dielectric’ Relaxation and Molecular Structure
(Monograph No. 9, Research Institute of Applied Electricity,
Hokkaido University, Sapporo, Japan, 1961), Chap. II.

#W. E. Vaughan, W. S. Lovell, and C. P. Smyth, J. Chem.

Phys. 36, 753 (1962).
# V. Karapetoff, Elect. Eng. 45, 236 (1926). It is worth noting

' that the first suggestion for use of the ¢ (¢) function which follows

from the untruncated K-V distribution® seems to be that of
P. Kobeko, E. Kuvshinskij, and G. Gurevich, Zh. Tekh. Fiz. 4,
622 (1937). )

# K. Pearson, Tables of the Incomplete T'-Function (Cambridge
University Press, Cambridge, England, 1957).

% J. R. Macdonald, J. Appl. Phys. 30, 453 (1959).
( 3“;2\). V. Tobolsky and J. R. McLoughlin, J. Polymer Sci. 8, 543
1952).
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are expected to be distributed. At a given temperature,
the RTDF of (24) should well describe any data, either
relaxation or retardation,’® for which the truncated or
untruncated K-V distribution has been used and should
describe temperature dependence as well if the present
assumption of a temperature independent #.(x) holds.

V. SPECIFIC TRANSIENT RESPONSES

When Egs. (20) and (24) are used to calculate 4 (1),
it is found to be proportional to the temperature-
dependent quantity 7. In order to allow expression in
terms of normalized variables alone, we introduce the
new dimensionless quantity 4;=r..4 (f), which is still
a function of both time and temperature. For simplicity,
such dependence is explicitly suppressed, and 4, is con-
sidered as a function of whatever variables are ap-
propriate. Similarly, the explicit dependence of ¢({) or
#(t) on temperature and time is usually suppressed
as well.

The previous equations now lead to

A= (sgny) BR™
Y=o (T (14p1, ¥)—T'(1+4p1, bV} ] (
[+Y—(1+p2){r(1+pz, aY)—-r(l"‘Pz, Y} Ug ;

29
y=us(¥)— (sgny)B @)

[ Y_m{r(pl’y)—r(pbby)}
+Y—*92{I‘(p2’ay)_r(p2’ Y)}

Equations (29) and (30) are actually independent of the
restrictive assumption (eb)=1 [or .= (ri72)}] which
we generally employ herein. Note that a¥V=i/r,,
V=i/7, and ¥ =1/7,. When B.=0 and 8:#0, B, p, ¢,
and b are all temperature independent, and the only
remaining temperature dependence is that of R (which
appears in ¥ as well as explicitly). When ¥ — 04,
Ay—> Ay, where 410 may be expressed as

1 g LA =+ (1) (=]
i Lo (bn Do (1—a)]

]ug(Y). (30)

(31)
which becomes, when pi= ps=p and ab=1,
sinh[ (14 p)o (8— 8,)/2
A10=R—1[ P ']1 L(+p)o (82— 81)/ ]} 32)
145 sinh[£(8:— 81)/2]

for 8270. The temperature dependence of 4 19, which is
of considerable interest, is discussed in the next section.
For the case 8:=0, 8,70, the only temperature de-
pendence of 41, enters through R since ¢ is replaced by
1 (except in R) and & by £ in (32) in this case.

Since I'(1,¥) = exp(— ¥, Eqs. (29) and (30) simplify
appreciably when p;=p,=0 and when p;=p,=1,
respectively. For most cases of interest, there is an
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appreciable time interval over which one of the two
terms within each set of curly brackets is negligible
compared to the other and the other is virtually con-
stant. Then only the ¥=+#9 term is of importance. For
example, when v>0 and p1=p2=p, 4:=2BR'T'(14p)
XY~ for a V<KI1KbY or <KLy, If further, p=0,
then A\&2BT'="[|o| (8~ 8)T ] in this time interval.

More generally, we may define 7'} as the normalized
time at which 4 begins to differ appreciably from 4y,
T as the time at which a change of slope in a logd4; vs
logT" plot may be expected when p;5 ps, and T's as the
time at which a final rapid drop-off of 4 occurs. We
may now somewhat arbitrarily determine T and 7'
from the - conditions r'?/¥1=1, r-171¥y=1, yielding
Ty=Rr19, Ty=Rr'?!,and T',= (T1T2)}=R when ab=1,
Note that o is set to unity here when 82=0, 8:70. When
0=0, 4;=R'exp(—V)uo(¥Y) and T\=T.=T»=R
=exp(—o,8.). It is clear from the definitions of g, b,
and R that ty=17y, 73; fs= 15, 71 for ¢>0 and ¢ <0, re-
spectively. Thus, 4, is virtually constant as long as ¢ is
less than the shortest relaxation time in the system,
and it decreases towards zero very rapidly when !
exceeds the longest relaxation time. When p,=0, for
example, the final decay is of the form 4,=B(t/r.,)™
Xexp(—1i/ts) for i> 1.,

Next, let us compare the transient responses of Eqs.
(29) and (30) with those which follow from several
other frequently used relaxation-time distributions.
Transient response for the Cole-Cole distribution,?
which involves the shape parameter m, cannot be ex-
pressed in closed form but leads to 4; proportional to
¥=m for ¥<1 and to proportionality to ¥—@m for
Y>>1. There is no final more rapid decay because the
Cole-Cole distribution is nonzero in the entire range
0<7< = and, therefore, ¥1=0, ¥s= ». The present
distribution can lead to a limited form of the above
behavior when p;= — py=1—m, yielding a distribution
symmetrical in s. Then, 4, is proportional to ¥-™ for
V<1KbY and to ¥V~ for g V&K1« Y. For the Cole~
Cole distribution, m is limited to 0<m<1, but it is not
so limited herein and has the temperature dependence
implied by Eq. (27).%

The next distributions lead to results which may be
compared to (29) and (30) in the special case py= po=p,
which yields unsymmetrical distributions unless p=0.
First, the Davidson—Cole distribution,* which extends
over a r range from 0 to 7, and involves the shape
parameter 8(0<8<1), yields

A1=[RT(B) PV~ 0-PeTyuo(Y), (33)
¥={1-[TB,¥)/TB) Bus(¥). (34)

When ¥<K1, Eq. (33) leads to ¥~(-# dependence, as
does (29) over the range ¢V<<1&3Y when p= — 8. This
correspondence holds only at a fixed temperature; note
also that (33) yields the nonphysical result 4;—  as
t— 0. The Cole—Cole and Cole-Davidson distributions



344 J.

FiG. 1. The initial-time quantity logieds0=1logio(RA410) vs the
inverse temperature parameter ¢ for r=10 and various (&%)
values.

are both inconsistent® as well with a distribution of &
and of & and £.

Finally, let us consider the predictions of the trun-
cated Karapetov-Voglis distribution.® We obtain from
(20), (22), and (28), for y>0,

A1=[RT (—», &) T (1+Y)~ T (1=, a+a¥)u(¥),
(395)

¥={1-[T (=7, a+a¥)/T(=»,a) JA+TY)}u(Y).
(36)

In general, the quantity ¢ must be replaced by zmi.. In
the present case, 417 o at t=0, and Y= response
for A, is obtained in the interval 1<<¥<a1. Note that
when 0LY<«Ka™, the above expression for ¢ is
closely proportional® to In(1+Y) for »=0 and to
vI[(1+Y)—1] for |»|>0.

VI. DISCUSSION OF CALCULATED RESULTS

Although tables of the incomplete gamma function
T(a,x) exist,* for the present work it has been found
convenient to use a digital computer to calculate
transient and temperature response from equations
such as (28) and (29). Results of such calculation are
discussed in the present section.

When the transient response of a linear system can be
measured at times less than the shortest time constant
or relaxation time of the system (excluding the “zero”
time constant associated with ), 4, approaches the
constant value 41, as the time between the imposition
of a forcing step function and the time of measurement
decreases. Very few data of this type seem available, but
measurements by Voglis” on current discharge from
mica down to 102 sec after the beginning of discharge
seem to indicate an approach to constancy. Voglis did not
investigate temperature dependence, but other data on
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the discharge of two similar electrets at different tem-
peratures® also show some tendency toward current
constancy at short times after the beginning of discharge
and indicate increased current at the higher tempera-
ture. Since the temperature dependence of the factor
(C.—C,) which enters into the current can usually be
fitted by 6" dependence (with n=1) over an ap-
preciable temperature range,*!5 the electret data
definitely indicate an increase in Ao with increasing
temperature.

First, we are concerned with 4, and ¢ time and
temperature dependence when 8,70 and there is more
than one activation energy operative in the system. In
Fig. 1, the quantity log104 20 is plotted vs the normalized,
shifted inverse temperature variable ¢ for various §;
values. Here A20=RAy is used instead of 4o in order
to remove the temperature dependence of the R~ term
in A1 and so allow the appreciable differences between
the results for different values of £, and £, to be clearly
indicated. Note especially the reflection symmetry
about the line =0 when £;= £,=¢ and the sign of £ is
changed. Also, when £,=§=¢, the curves are sym-
metrical about the line o=—§% The presence of the
exponential dependence of R~! on o causes Ao to
increase monotonically for all values of ¢ and & as o
decreases and the temperature increases. This result is,
therefore, in qualitative agreement with the electret
data, but the actual temperature dependence of the
theoretical 4,0 depends strongly on the values of such
quantities as &,, &;, and 7.

There are a number of temperature-independent
constants which must be chosen or determined when
comparison is made between theoretical and experi-
mental A, curves. A procedure for determining these
quantities from transient response data is discussed
below. A sufficient set of parameters is 6., Tcn, o, 7, &,
&1, and £&,. If theoretical 4, curves are to be plotted in
terms of normalized variables, only the last five param-
eters are required. Although we cannot hope to present
herein curves which illustrate the effects of wide varia-
tions of all these parameters, we present representative
cases which illustrate some of the general time-tempera-
ture behavior possible. For simplicity’s sake, we here-
after take ¢,=0, since nonzero o, only causes equal
translations of all curves on a log-log presentation. Note
that the condition ¢,=0 implies the specific choice
0,=0,.

Figures 2 and 3 show sets of curves for various values
of ¢ and for £,>0, and 8,=0. The case §,=0 is of
special interest, even though it may only be approxi-
mated in physically realizable cases, because it leads,
when ¢,=0, to ;=1 for ¢>0 and to T>=1 when ¢<0.
In addition, when &,=0 and &=¢§=¢, 4, is propor-
tional to ¢! for ¢ §2>1.

The small solid dots on the curves of Figs. 2 and 3
show the positions of T and T, Similarly, a larger
circle is used to indicate 7',. Figure 2 shows curves for
a very wide range of temperatures. In the special case
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0.=0, e.g., o=—1 implies 6= o and ¢=4 requires
8=48,/5. When ¢,<0, however, ¢ may reach values
appreciably more negative than —1 without necessitat-
ing §= oo,

The condition ¢=0, which implies 8=0,>0, is of
particular importance because it leads to infinite values
for p;, to G(r)=8(r—74,), and to simple exponential
decay for 4, even though £ and & may both be dis-

tributed. When ¢=0, one also finds T1=T,=T,=1,
Since 7.,,= T, for the present choice of ¢,=0.

Figures 2 and 3 show that as o decreases, T2 always
decreases (when 8;>0) and 4o always increases. This
behavior is a consequence of the normalization condi-
tion. Since ¢( ©)=1, the total area under the 4; vs T
curve must always be unity, independent of ¢.

Comparison of the o==1 curves of Fig. 2(a) with
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F1. 2. The normalized transient response function 4, vs normal-
ized time T for several £ and o values (log-log presentation).
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Fi1c 4. The relaxation function ¢ vs normalized time T for
several ¢ and o values (semilog presentation).

the o=F1 curves of Fig. 2(c), respectively, shows that
corresponding curves are the same except for horizontal
and vertical translations of six decades. The translations
arise from the different values of R appropriate to the
two o values, while the equality of shape follows from
the equal values of |¢| and of py=p;=p for the two
curves compared. Thus, curves calculated for a given §
can also be used, after translation, for those with —&.

Since the range (Ts/T:)=7r%°l increases as |o|
increases, the curves show a wider and wider region of
constant slope, equal to — (14 p), as || increases. But
since p== £/ here, the slope of the straight-line portion
approaches — 1 in the limit of large |s|. Note that the
signs of both ¢ and £ determine whether the final slope
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is approached from below or above. The present
T—0+0) hehavior has been widely found for a variety of
situations.”#-2837 The quantity pis almost always in the
range —0.5<p<0.5 and is usually found in the range
—0.2<p<0.2. The present results suggest a reason why
it is usually relatively small. Whenever a thermally
activated process is present and 3,70, the range over
which T—-0+» behavior can appear increases as |o|
increases. Thus, it may happen that a |o| large enough
to yield an appreciable 7-0*+# range is also large
enough to cause |p| = |£/o| to be small.

An idea of the range of | p;| may be obtained from the
physics of the situation. For simplicity, take 8,=0 and
8$=E. Then, since E obeys an exponential type of dis-
tribution, |X\;|~' may be roughly interpreted as the
mean activation energy for transition from one state to
another for the = range over which A, is the applicable
parameter. This energy is likely to be of the order of
k0, or less in cases of experimental interest. But in the
present situation |p;| = |N:&8o/[ (60/0)—1]|, since Bs™
equals k8,. Since 6 is always appreciably less than 8, we
find that |p;| = (6/60) when |A\;'| =6, in the present
case. Also, when both 8; and B8, are nonzero and 8,/8:
negative, although it may be possible to decrease o
sufficiently to cause |p;| to exceed unity by an ap-
preciable factor, the concomitant decrease in the range
T3/T; will lead to elimination of any region of T—0+#
dependence. Thus, in both cases, one does not expect to
find 7-0+» dependence with |p|>1. Unfortunately,
little transient or frequency response measurements
seem yet available over a wide enough range of tempera-
tures to allow the dependence of p on temperature to be
accurately determined. What data are available, how-
ever, seem to suggest either a temperature-independent
p(B2=0) or temperature dependence in rough agree-
ment with the predictions of the present work when
Ba5£0.9:10.11,32

Since ¢=[6./6)—(8./6,)], ¢ can only go negative
if (8,/6,) is positive. But hecause 8 'is usually experi-
mentally limited to values below 6o, ¢ does not become

- zero or negative unless (81/82) <0, requiring positive

correlation between & and In(vy/vs.). If (84/82) is
sufficiently negative, the measuring temperature may
be varied over a wide enough range that 7—{+#) be-
havior is noted for both ¢>0 and ¢ <0; the sign of p is
different in these two regions as well, of course. Alter-
natively, when (81/82) >0, the minimum experimentally
achievable value of ¢ will be positive and may be
sufficiently large that 7—(+#» behavior still remains at
the highest possible measuring temperature.

Figure 3 with 8,=0 shows results when 7 is larger
than that of Fig. 2 but the temperature range is smaller.
Here the larger r value leads to a greater increase in the
range (7's/T1) for a smaller temperature change than is
required for the case of Fig. 2. At the point log107"~0.75

37 M. F. Manning and M. E. Bell, Revs. Mod. Phys. 12, 215
(1940).



TEMPERATURE RESPONSE OF A THERMALLY ACTIVATED SYSTEM

of Fig. 3(c) where several of the curves nearly cross,
there is virtually no temperature dependence of 4; over
the entire range 0.5<¢<1.5.

Figures 4 and 5 show the ¢ curves corresponding to
the A4 cases of Figs. 2 and 3, respectively. Here, how-

ever, a linear scale for ¢ is used. These curves can repre-

sent the decay of charge during the discharge of a
fully charged capacitor or the relaxation of stress after
the application of a step function of strain at t=0to a
mechanical system. Alternatively, if the present ¢
curves are rotated 180° about the line ¢=1 and unity
subtracted from the result, one obtains, for (>0,
¥=1—¢. The ¢ curves then represent the charge during
step-function charging of a capacitor or the strain after
the application of a step function of stress.

Figure 4 shows that for any value of £ the shape of
the decay curves changes appreciably as ¢ increases. For
£=0 the change is a progressive decrease in the slope of
the decay lines while for £ <0 and £>0 the decreases in
decay rate primarily occur near ¢ <1 and ¢ 50, respec-
tively. For £=0, the ¢=—1 and ¢=-1 curves are of
exactly the same shape, but this is not the case when
£7#0. Particularly noteworthy is the way the positions
of T, T., and T fall on the curves (indicated by the
solid dots) as o or £ is varied.

The curves of Fig. 5 are of the same general shape as
the corresponding ones of Fig. 4 but the choice §;=0 of
course causes T to be unity, independent of ¢ for all
curves. This effect of constant T is obviously par-
ticularly pronounced for the £>0 curves of Fig. 5(c).
When £=0, the 6 =2 curve of Fig. 4 is identical in shape
with the 0=0.5 curve of Fig. 5, as are the corresponding
o=4 and ¢=1 curves, This is because 77 is the same for
these choices, causing the range T's/T to be the same.
A different comparison is appropriate when £7#0. For
example, the curves for {=-—1, ¢=1 of Fig. 4 and
§=—0.5, ¢=0.5 of Fig. 5 are nearly the same in shape
because these choices cause the corresponding p’s to be
the same. The appreciable difference in range between
the two curves shows up only in a relatively small
difference in the shape of the curves for 0.8 <¢<1. For
£>0, curves of Figs. 4 and 5 having the same p are
virtually the same in shape except in the region
0<¢<0.2.

Although the majority of ¢ and ¢ curves for mechani-
cal systems seem to change their shape only slightly if
at all when the temperature of measurement is changed
within a limited range, this is not always the case.
Stress relaxation results on polysulfide rubbers®# and
creep recovery results on rosin, phenolphthalein, and
soft and hard rubber by Kobeko ef al.® show definite
change of curve shape with temperature in qualitative
agreement with some of the results of Figs. 4 and 5.

All of the curves of Figs. 2 through 5 are also pertinent
in the case B2=0, 8,70, where £ alone is distributed,

# M. D. Stern and A. V. Tobolsky, J. Chem. Phys. 14, 93
(1946).

# P. Feltham, Brit. J. Appl. Phys, 6, 26 (1955).
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Fic. 5. The relaxation function ¢ vs normalized time 7" for
several ¢ and o values (semilog presentation).

provided the proper temperature-independent range
and p values are taken. If the single § value present in
the 8,=0 case is taken as &, and given the same value
as in the B25#0 situation, then R and its temperature
dependence will be the same in the two cases and no
translation on the log-log plot will be necessary in going
from one case to the other. In transforming from the
B27#0 case to that where 8,=0, all ¢ values in formulas
are to be replaced by unity except the quantity (¢ —o)
which appears in R; this is equal to (9—2,)= (6./6)—1.
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Thus, in the present case of ¢,=0, the quantity o, taken
as a measure of temperature on the curves of Figs. 2 and
3, may be interpreted as (6,./6)—1 whether 82520 or
62=0.

As examples, the ¢ =0 curve of Fig. 3(a) is applicable
when 82=0 provided =6, and r=1; a case where £ is
not distributed. The 0=0.5 curve of this figure is appro-
priate when 6=26,/3 for r=10? and p=¢=—1, etc.
Note that in the present case, since the range and p are
temperature independent, the shape of a given curve re-
mains invariant as 6 changes and such change only pro-
duces horizontal and vertical translations on a log-log
plot, arising from the temperature dependence of R. In
the present situation of 8:=0and p1= ps= p=£¢, the only
temperature dependence of A; in the region of 7—*»
behavior arises from a factor R*=exp[{(6,/6)—1}£6.],
which may either lead to a decrease or increase with
increasing temperature, depending on the sign of .

In the case B.=0, the quantities ¢, ¥, and RA,
obey a time-temperature superposition law (the TTS
law) such as that widely applied in transient and
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frequency response analysis of polymers.13:4-4 The only
temperature dependence of ¢, ¥, and RA,;=71.4(%)
appears in the variable ¥ and so only in the time-tem-
perature combination TR'=T exp[—{(6./6)—1}8.]
=tre;. "t exp[—{(6,/6)— (6./60)} 8.]. Thus, tempera-
ture change produces shifts but no change in curve
shape. Therefore, the effect of an increase of the
temperature-independent time variable T" could as well
be produced by an increase in 8, and when 8:=0, ¥, and
¢ curves may be considered as functions of [1—6,/6]
instead of loge7. The situation where £ alone is dis-
tributed is plausible for amorphous polymers because
their response to a mechanical stimulus involves a large
number of polymer chain segments of varying length.
Thus, each different segment has a different natural
frequency of vibration but is, on the average surrounded
by a similar intermolecular force field, leading to a
single or narrowly distributed activation energy.15:3.40.4

The TTS law has been found to apply quite well for
a variety of nonpolar substances.®* On the other hand,
when the material involves polar forces, it is not to be
expected that all elements involved in its response will
find themselves in equivalent surroundings. Then, one
may expect that & or & and £ may be distributed. In
these cases, which -might be pertinent for both the
mechanical and electrical response of polar substances,
of solid mixtures'® (8 alone distributed), or of partially
crystalline polymers'® (8 and £ distributed), one would
not expect the TTS law to apply.

Before discussing further calculated curves, it may
be useful to show how pertinent parameters may be
derived from a comparison of theoretical and experi-
mental curves. In making such comparison, which we
confine to the A, level, it is frequently unnecessary to
calculate the exact form of theoretical curves using
values of I'(e,x); instead, it is usually sufficient to
approximate a theoretical log-log curve by first a
horizontal portion ending at 7= T'; then a straight line
of — (1+p1) slope until T'=7",; next a straight line of
— (14 p2) slope up to T'=Ty; and finally a rapid drop-off
for 7> T's. The present results may then be used for the
dependence of A1, p1, and p2 on temperature. This
method of approximation is clearly inapplicable when
no T—0+¢) straight-line region occurs, e.g., because the
range is too small.

For simplicity, we discuss theoretical-experimental
comparison principally for the case B25#0, p1=p2=0p,
and ab=1. It is assumed that transient measurements
are available for at least two different temperatures and
cover a sufficient time span that ¢ and #, can be estab-
lished at each temperature. Consideration of tempera-
ture dependence of 4, immediately establishes whether
>0 or ¢<0. Then the #; and ¢, values at a given tem-

4 A. J. Staverman and F. Schwarzl, Die Physik der Hochpolymer,
edited by H. A. Stuart (Springer-Verlag, Berlin, 1956), Vol. 4,
pp. 56-62.

41 See reference 30, p. 144 fi.

4 0. Nakada, J. Phys. Soc. Japan 12, 1218 (1957).
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perature, say O, yield 714, 720, and 7.,. Further meas-
urements at 6=0;70,, yield 71, 72;, and r.;, leading to
the value of R=r,;/7.. appropriate at ;. From this
value of R, the quantity &, may then be calculated.
Next, T, T, T, a, and b can be calculated for the two
temperatures. The quantity In(79/7y) at the two
temperatures may then be used to yield ¢, and r, and
finally ¢;. From r and &, one can then calculate &; and
&.. Then, knowledge of (p). or (p); allows £ to be
obtained. If the quantity 6 can be estimated theo-
retically or obtained experimentally from another kind
of measurement, then (81/8s) can be calculated using a.,.
Note that (£2— £1)= (81/82) (82— &), allowing (£2— £1)
=1In(742/741) to be obtained. Without further informa-
tion, such as knowledge of ), it does not seem possible
to get B, and B separately, although if B, is taken
positive, the sign of B, is fixed. Note that when B,=0
and 38,70, p may be obtained at any temperature and
is equal to £=\/B1. Again, 8 cannot be obtained with-
out further knowledge of the theoretical relationship
between § and £.

Figure 6(a) shows (41/410) vs logieT for fixed tem-
perature and several values of p. When p=—1, 4,
shows a considerable straight-line region and A1/A1e
may be quite well approximated over most of the range
of T shown by [1—¢; In(145,7)], where @, and b, are
constants. The p=—1 curve may also be approximated
by straight-line segments.® Figure 6(b) presents similar
curves for ¢. Comparison of Figs. 6(a) and 6(b) shows
that the 41/A41 curve for p=—1 is identical with the
¢=uo(f)—y curve for p=0. This result follows from the
present special form of G(r) in Eq. (24). For such
power-law dependence, in fact, the more general
result holds that for all finite p; values, (41/410),.ps
= () 14o.1+05 as may be directly verified from Eqs.
(29)-(31). Thus, all the ¢ and ¢ curves of Figs. 4, 5, and
6(b) may be carried over to A1/ 41 curves, such as those
in Fig. 6(a), by letting p;— p;—1. Further, all the
present constant-temperature log-logd, curves of the
present paper may be considered as log-loge curves with
p: values increased by unity provided the curves are
translated vertically by an amount sufficient to make
Aw=1. Note that in agreement with Table T as |p|
increases and thus as p — 4=, 41/4 1 or ¢ approaches
exp(—T/T;), where T;=T; for +o and T;=T, for
~ ., For py— ®, pp— — 0, the corresponding result
for ¢ would be [exp(—T/T1)+exp(—T/T5)]/2.

The results of many creep retardation experiments
and many mechanical stress relaxation experiments may
be described over an appreciable span of time by either
¥=~a1 In(1+b:1)uo(f) or the corresponding ¢=uq(f) ~y
expression, respectively, where 4, is a constant.®4 Such
dependence, or simpler Inf dependence, has, in fact, been
found in a wide variety of situations, including aging of

4 See reference 30, pp. 125-126.
# D. Kuhlmann, Z. Physik 124, 468 (1947).
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F16. 7. The quantities logioD; and ¢ vs logie T for =1 and
various 7'y values. Here ¢ gives the normalized charge remaining
in the system after charging from a zero-charge state for a time T,
then discharging at 7=0. D= —d¢/dT.

barium titanate,*® magnetic viscosity,** and chemi-
sorption and oxidation.#” It is, however, sometimes
associated with nonlinear rather than linear behavior,
Whenever dielectric charging or discharge experiments
show ¢! current behavior over an appreciable time
range, probably the most common behavior next to
simple exponential decay, the charge on charging from
an uncharged condition will also exhibit In(3:f) response
over part of the charging curve. Since the ¢ curve for
p=01n Fig. 6(b) can be well approximated by behavior

4 M. C. McQuarrie and W. R. Buessem, Bull. Am. Ceram. Soc.
34, 402 (1955),

4 R. Street and J. C. Wooley, Proc. Phys. Soc. (London) A62,

562 (1949).
#7 P, T. Landsberg, J. Appl. Phys. 33, 2251 (1962).
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of this type over most of the pertinent T range, the
present distribution with p;=p2=0 may be used to
describe such creep or dielectric data and is preferable
to alternative approximation using the K~V distribution
for reasons already discussed.

1t should be noted in Fig. 6(b) that |p| values even
as large as 0.1 lead to appreciable curve portions which
might be mistaken for In(bif) dependence. Thus, in
determining p from ¢ data for which experimental error
is not negligible, it is clearly desirable to have available
data covering as wide a time span as possible. As might
be expected, an increase in 7 from 10* to 10® produces a
completely negligible change in, for example, the p=0.5
curve of Fig. 6(b). On the other hand, such a change,
since it affects T, and T, leads to a very important
change in the p==—0.5 curve, for example. It remains
of very nearly the present form but is translated eight
decades to the right.

Figure 7 shows discharging curves after noninfinite
charging times. Here Dy is normalized similarly to 41
and is, from Eq. (9), [41(T)— 41 (T+To)uc(T)], where
To=ty/7.n and #y is the charging time before the begin-
ning of discharge at T=0. The parameter shown on the
various curves is T, and it is clear that T's must exceed
Ty (o must exceed the longest time constant in the
system) before the discharge curve approximates well
to that for infinite prior charging from a zero charge
condition. The necessity for such long charging is
frequently overlooked. Voglis” has purposely discharged
mica samples after varying charging times and found
current curves of the same general character as those
for p=0 in Fig. 7(a) but, in his case, the best value of
p is about —0.13. His charging times roughly cover the
range equivalent to To=10% to T3>10° of the present
figure. It is worth mentioning that the present curves
for To<T: and those of Voglis differ appreciably in

ROSS MacDONALD

form from curves calculated for a similar situation from
a Gaussian RTDF! with 0<7 <,

Also shown in Fig. 7(a) are curves for p=1 and —1
for T9>10° and Th=1. It is noted that when 7T,
the straight-line slope of the curves, when it appears,
is not T-0+» as it is for To> T but is T+, This
follows because series expansion of D shows that for
ToKT, D; is closely equal to —T7(dA./dT). This
derivative has also been separately calculated in the
computer program. Since it approaches a constant as
T — 0, Do becomes proportional to T for T'o<X7".. The
resulting decrease of 1)y below the value appropriate for
To= o shows that when 7\<T) the charging time is
insufficient to charge fully even the element of the
system having the shortest relaxation time.

In Fig. 7(b), the normalized charge remaining in the
system after charging for a time T'¢ and discharging for
a time T, ¢(T)=d (T4 To)us(T)—¢(7), is plotted vs
log10T for several T values. In this case of finite charg-
ing, ¢(7T) is given by the integral of D(7) from 0 to «
minus that from 0 to 7. When 79— « and 77>0, this
definition yields the usual 1—y for ¢. The table in
Fig. 5(b) shows ¢(0+4)=y(T), the relative proportion
of full charge in the system at the instant of discharge.
In the limit Ty— 0, ¢(T") — Tod1(T), so that ¢(0+)
approaches T'¢d 0. These results again emphasize the
necessity for T to exceed T if the complete discharge
curve is desired. Only when 7'>3>T, should a discharge
current curve be compared with the charging current
obtained starting from zero initial charge.

The dashed curve in Fig. 7(b) has been plotted
with an expanded scale as indicated by the arrow.
The dotted curve shows the fit obtained to the infinite-
charging-time ¢ curve by an expression of the form
[1—a:In(14+57)]. The solid curve marked >10° is
identical in form with the p=—1 curve of Fig. 6(a), as
mentioned previously. It is not quite symmetrical about
T=T. but approaches such symmetry as Ty/T,
increases.

Figure 8 is included to show the effect of various com-
binations of p; and p. on the shape of the current
transient response. It is clear that the slope of the line
in the interval T7'<T<T, is —(14p;) while that
appearing in 7', <7'<T's is — (1} ps). Note that unless
measurements are extended considerably beyond T'= T,
the increased decay rate at 7> T, arising from ps in the
case p2> py may be mistaken for the final decay appear-
ing at T> T, Decays in these two regions may be
distinguished even when 7' cannot be extended to T,
because — (14ps) decay yields a straight line on a
log-log plot while decay when T exceeds the longest time
constant of the system leads to a curve with continually
increasing slope magnitude. Finally, care should be
exercised that an increased decay rate in the region
T1<T<T; does not arise from too short charging, as
exemplified by the To=10* curve of Fig. 7(a).

The (—0.5, —1) curve of Fig. 8 has a portion between
log1T'=3.5 and 6.5 arising from the choice pa=—1,
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where A, decreases almost linearly with logy 7. Such
linear behavior is characteristic of the wedge-box dis-
tribution over part of the pertinent time range. Values
of (p1,ps) of (0.5, 0) are usually chosen, however, for
wedge-box behavior, which makes such behavior appear
in ¢ rather than A, as it does here. Then, the resulting
¢ is used to describe the relaxation of stress under
constant strain. As already mentioned, there is, how-
ever, no real distinction between constant-ltemperature
log-logd, and ¢ time curves of the present paper
provided p; values are suitably transformed.

Stress relaxation curves at constant strain for poly-
mers frequently exhibit® transient behavior in which
p1> p2, as in the restrictive case of the wedge-box dis-
tribution. On the other hand, considerable retardation
dielectric data on a variety of materials shows py=p,
behavior over the range of times investigated. Finally,
some organic and inorganic materials such as wax
electrets,? amber,? kerafar U,” petroleum,* rutile,? and
Teflon?” seem to show some tendency for p; to be less
than p, for the dielectric retardation situation. No
presently available data on such materials extend to
long enough times to allow the final 7> T'; decay region
to be unambiguously identified. Note that this region
may be made to occur at shorter times by raising the
temperature, but if & is distributed, the range T5/T:
may be too much reduced thereby to allow p; and p, to
be determined. It would be particularly valuable, how-
ever, for dielectric transient response curves to be
obtained which include shorter times after the start of
discharge, extend to longer decay times, and cover a
wider range of temperature than any currently available.

One reason for the above trend for p; to exceed pq in
stress relaxation situations and for p; to be equal to or
less than ps for retardation is that for the same mate-
rial there is some tendency for the distribution function
F(r)=1G(r) for relaxation to be the approximate
inverse of that for retardation. For the present form of
G(r), such inversion of F(r) is equivalent to the trans-

5
6|
-
=
gt
1 / oﬁ= 0 \\\‘:9'5
s Jo5 €= &= —— &0
[ ——£:0
: -t
-9 1 1 I 1 '
0 | 2

F16. 9. Dependence of logie4; on the inverse temperature variable
o for T=10* and several § =§=¢ values. (8;>0).

r §
.y —
C .
I ]
sF =
- ]
_T1F -
<9 F ]
S \J
— .8 \\
- Y
o k

9
L -
10Cs kx
05 4

8,/8

F16. 10. Dependence of logie4 1 on the inverse temperature variable
(8./6) for T=10% and several §&; =, =£=p values (8;=0, 8:7%0).

formation from p; to —p;. For a choice of p=0.5 for
relaxation (the wedge distribution) Smith*® has shown
that when T/T; is appreciable, the corresponding
G () [or F(7)] for retardation is of very nearly the form
of (24) with p=—0.5 over most of the pertinent range.
1t is the above property of invariance of the form of the
present expression for F () under inversion which makes
it and the corresponding G(7) of particular value as
distribution functions useful for both retardation and
relaxation situations.

Considerable idea of the temperature response of
current at a fixed 7> T may be obtained by comparison
of the various ¢ curves of Figs. 2 and 3 at fixed 7. More
directly, Fig. 9 shows expected temperature dependence
of logied: at T=10* for five different ¢ values in the
case B:7%0. Logarithmic current curves qualitatively
similar to that for £=0 have been found for fluorothene
and Lucite by Munick? at ¢=100 sec after the begin-
ning of charging ot discharge. The apparent value of
p for these polar materials is very nearly zero. Measure-
ments were extended over the range from about —180°
to 47°C.

Figure 10 shows similar theoretical curves for the

case B2=0. Since only £ or — £ is distributed here, the
temperature variable ¢ has been replaced by 8,/ for
this case. Note that although 6, is arbitrary, the fixed
value of 7’=1{/7.,= 10* involves it through 7.,. The p=0
curve in Fig. 10 is not quite as similar to Munick’s
experimental results as is that in Fig. 9. The primary
‘differences between curves of Figs. 9 and 10 occur
because neither p; nor the range is temperature depend-
ent when 82=0. The decreases at both ends of the curves
of Fig. 10 occur, however, because 7'y and T, do still
depend on temperature through R.

In order to show the temperature dependence of
stress relaxation at constant time after the imposition

48T, L. Smith, Trans. Soc. Rheol. 2, 131 (1958).
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of strain, one must consider the quantity ¢. Figure 11
shows the quantity logep vs either 6./8 or (¢+41), de-
pending on whether 85=0 or 8270, respectively. Again,
the value T=10¢ is selected. Only one ¢ curve for the
case B,=0 has been included in Fig. 11 because the
system then obeys the time-temperature superposition
law and earlier ¢ or 41/A1o curves for fixed 6 and vari-
able T may readily be interpreted as curves for fixed T
and variable 6. Specifically, let us denote the fixed T
value used with variable 6 as 7, and the fixed 6
value used with variable T as 6,. Then, when the
TTS law holds, it follows that the logi 7" and 6./6
scales are related by logieT+ (8. logiee) (0./6)=10gT
+ (8. logee) (8/6.). In much of the present work, we
have taken logie7»=4, 8.logre=4, and ¢,=1, where
the latter value corresponds in the present case of ¢,=0
to (8./6,)=2. Thus, the two possible scales are here
related by logi07+4(8./6)=12. All the foregoing ¢ and
A1/ Ao curves plotted vs logoT may thus be considered
as alternatively plotted vs (8,/6)= (12—log:,T)/4. The
present £,=0.5, £,=0 curve of Fig. 11 for 8:=0 is thus,
in fact, of exactly the same shape (after reflection in the
(6./8) axis) as the &=—0.5, £&5=—1 curve of Fig. 8.
When shape alone is important, all the present ¢=1,
logied: curves plotted vs logi o7 may be considered as
logiop curves vs (6,/6) in the case B2=0 provided &;
values are transformed as well. It is important to note,
however, that the logie41 curves of Fig. 10 plotted vs
(8./6) cannot be transformed directly to logiep curves
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for T'=104 and several (£,,£;) combinations.
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F1c. 12. Dependence of logied on (6/6,) in the case B2=0
for T=10¢ and several (&,£;) combinations.

vs log1T because ¢ is related to 4,/410 not just to A4,
and although Ajo is time invariant, it is temperature
dependent.

Also shown in Fig. 11 for the case 3,0 are corre-
sponding curves for ;=0 (solid) and §,>0 (dashed).
When &,=0 and £,>0, it will be noted that for a fixed
time 7>0, ¢ approaches unity slower than when £,>0
as ¢ increases and the temperature is lowered. In this
case only, bY =T is a constant independent of ¢, other-
wise, Y as well as ¥ and aY approach zero as o increases
at fixed 7.

Since logiep is usually presented plotted directly vs
temperature in the stress relaxation case, Fig. 12 is so
plotted for 8.=0, T'=10%, and several ¢; combinations.
The wedge-box curve (0.5,0) is in excellent qualitative
agreement with experimental curves on polystyrene
presented by Tobolsky.®® Its detailed shape could, of
course, be further altered by taking 7.7 71T, by using
¢; values somewhat different from (0.5,0), by altering #
through a change in &., or even by separating the wedge
and box parts of the distribution so that there is a
region of zero relaxation-time probability density be-
tween them.
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