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INTRODUCTION

PHYSICAL process governed by a linear differ-
ential equation may exhibit a single retardation
or relaxation time or a distribution of such times.
The usual distinction between retardation and relaxa-~
tion systems is based on whether the physical re-
sponse variable considered primary increases toward
a final value upon application of step-function
stimulation or decreases and relaxes toward such a
final equilibrium or steady state. For example, when
a constant mechanical stress is applied at { = 0, the
noninstantaneous progression of the resulting strain
toward a finite or infinite final value is a retardation
process. Alternatively, when a constant strain is
applied and maintained, the stress relaxes toward a
zero or nonzero final value. Clearly, either process
may be considered, and the roles of stimulus and
response become interchanged on going from one
to the other.

The development of mathematical methods of
describing the temporal and/or frequency response of
linear distributed dielectric and mechanical systems
has progressed in a parallel but infrequently tangen-
tial fashion for a long time. Many developments have
been carried over freely from one field to the other,
but this process has been retarded by the multiplici-
ties of different nomenclatures in the two fields. In
an effort to bring the notation and methods of the
two fields into closer agreement, in the present work
we shall first compare equivalent quantities in the
two areas using reasonably well standardized nota-
tion.** We shall then show how retardation and
relaxation processes can be described by a single set
of constitutive relations and shall finally discuss
representations of the superposition principle valid
when impulse functions occur under the integral sign.

1 H. Leaderman, Trans. Soc. Rheol. 1, 213 (1957).

2J. R. Macdonald and M. K. Brachman, Rev. Mod. Phys.
28, 393 (1956). The following proofing errors should be cor-
rected. First, the « limit in Eq. (1) should be changed to ¢.
Second, 8he lower limit in the first part of Eq. (2) should be
0— not 0.

8J. D. Ferry, Viscoelastic Properties of Polymers (John
Wiley & Sons, Inc., New York, 1961).

COMPARISON OF MECHANICAL AND
DIELECTRIC RESPONSE

Table I compares nomenclature for retardation
and relaxation systems. We have elected to consider
only the mechanical shear situation'?; notation for
other types of mechanical deformation, such as
volume and longitudinal, appears in the final report
of the Committee on Nomenclature of the Society
of Rheology.! In a mechanical or dielectric retarda-
tion system, stress or voltage is applied and the basic
response is considered to be the resulting strain or
charge. On the other hand, for a mechanical relaxa-
tion system, strain is the applied, controlled variable,
and the resulting stress the conjugate variable. Since
the dielectric relaxation situation where a constant
charge is applied and the resulting voltage measured
is not used experimentally, it is not further considered
herein.

In Table I, C. and e are the capacitance and
dielectric constant, respectively, of the dielectric
system with air or vacuum replacing the usual ma-
terial between the plates; their introduction allows
simple transformation from capacitance to dielectric
constant variables. One difference between corre-
sponding quantities for mechanical and dielectric
retardation systems is that the strain e(¢) is an in-
tensive quantity while the measureable charge ¢(¢)
is extensive. This difference will be eliminated in
later comparison using normalized.variables; it can
easily be eliminated directly by the use of intensive
variables such as current density and electric field
strength. It is unfortunate that the same symbol e is
used for strain in mechanical systems and for di-
electric constant in dielectric ones. The dielectric
notation used herein is conventional® except for R, .
This is the low-frequency limiting parallel resistance
of the system; it is frequently infinite; and it may be
represented by a series RC, in parallel with the rest
of the system, in which the series capacitance is
infinite, leading to an infinite time constant. Simi-
larly, the C. introduced later is the high-frequency
limiting capacitance of a series RC branch, in parallel
with the rest of the system, in which the series R is
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TasLE I. Comparison of nomenclature.

Retardation Relaxation
Mechanical Dielectric Mechanical
Name Symbol Name Symbol Name Symbol
Stress a(t) Voltage V(1) Stress a(t)
Strain e(t) Charge ) Strain e(t)
Time derivative ¢(¢) Current 10,
of strain
Steady-state or J, = J, 4 J, Low-frequency Equilibrium G. =G, —G;

equilibrium limiting
shear com- capacitance
pliance
Glass shear Jo=dJ.— Ja High-frequency
compliance limiting
capacitance

Delayed shear j, = J, — J,
compliance

Shear viscosity
coefficient limiting

parallel

resistance

sz (Ca)eao
€q

Cs_Cno=(_

Low-frequency R,

shear modulus

Glass shear
modulus

G =G. + G
J,!

Il

Cﬂ) Decay shear Gi=G,—G.
modulus

€

cfom)

Shear viscosity
coefficient

zero; it is frequently termed the geometrical capaci-
tance and leads to a zero time constant or retardation
time. The quantity G. is only different from zero and
equal to J;! when the viscosity is infinite, as in a
cross-linked polymer which admits no plastic flow.

Further quantities may be defined when one con-
siders system response to a forcing step function
applied at ¢ = 0. We use the conventional unit step
function®* u,(¢) and Dirac delta function §(¢) = (¢)
= u(f) centered around ¢ = 0. A dot denotes differ-
entiation with respect to the argument throughout.
It is convenient to introduce the following symbols
for limiting processes:

(—eEO—,
lim +6f0+) (1)
€e—0 t—€=t_,

t+e=t4,

where e is positive. Then %(0—) = 0, u,(0) = 3,
and % (0+4) = 1.
4G. A. Korn and T. M. Korn, Mathematical Handbook for

Scientists and Engineers (McGraw-Hill Book Company, Inc.,
New York, 1961), pp. 255-259, 740-745.

Table II shows various step-function responses.
Thus, C(t) is the effective time-varying capacitance
(or normalized charge) following the application of a
step function of voltage at ¢ = 0 to an initially un-
charged system; the corresponding time-varying
effective dielectric constant transient response is
€(t) = (e/C.)C(2). Note that J(t), C(f), and G(f) are
normalized quantities inasmuch as they represent
system transient response to a unit-amplitude step-
function stimulus. It is usually convenient to separate
out that part of the response of the system which
does not depend on such quantities as C, and R,, or
J, and 7. The resulting response function, which we
denote with a subscript d as shown in Table II, is
then associated only with one or more finite retarda-
tion or relaxation times or with a continuous distri-
bution thereof. The normalized response functions
¥(t) and ¢(f) of Table II thus describe this part of
the system only.

For mechanical systems, ¥(¢) is usually termed the
creep or retardation function and ¢(¢) the relaxation
function. It is especially important to emphasize
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TasLE II. Step-function response.
Retardation Relaxation
Stimulus Mechanical Dielectric Mechanical
f(t) a'(t) = o’ouo(t) V(t) = Vo’uo(l) e(t) = eouo(t)
Name Symbol Name Symbol Name Symbol
J(t) = «t)/a0 . . C(t) = q)/Vo Shear G(t) = o(t)/eo
SRS~ Upk t/nhuat) eI 0L /Ry Juo() relaxation = Gaul?) + Gadlt)

Normalized + Jag(t) + (Cy — Coy(t) modulus + 78(t)

response Delayed Delayed Decay

n component of

shear creep Ja(t) = Jag(?)

time-varying

compliance capacitance
Retardation Retardation
shear creep ~ ¥(?) function
function

component of

component, of
shear relax-
ation modulus

Shear
relaxation
function

Cu(t) = (Cs — Co)y(t) Gu(t) = Gap(t)uo(?)

W) #(t)

that these step-function transient response functions
must be zero for ¢ < 0, i.e., for times before the
application of a stimulus. Thus, when expressions for
them are written down explicitly, they must involve
uo(t) or higher order impulse functions such as §(¢).
The uo(f)’s present in the J(¢), C(¢), and G(t) of Table
II are usually*®*7 omitted and ¢(f) and ¢(¢) are
apparently taken as continuous and involving no
impulse functions. This procedure leads to difficulties,
as shown later, since it eliminates a possible discon-
tinuity at the origin and implies that the above
functions may not be zero for ¢ < 0.

Table III presents a comparison of important
normalized quantities. It is here assumed that the
forcing function is applied at ¢ = 0 and thus involves
uo(f) and/or higher order impulse functions. Table
III should be read either from the ‘‘General”’ column
to the left or from this column to the right, not com-
pletely from left to right. Thus, the general distri-
bution function F(7) may be used to represent either
L(7)/J4, where L(7) is usually denoted the spectrum
of mechanical retardation times, or H(7)/G,, where
H(r) is the mechanical relaxation time distribution,
or spectrum, or probability density. Although L(7)
and H(r) are inter-related®®*® for the same material,
as are ¥(t) and ¢(f), the present arrangement is not
meant to imply that they are equal but only to show
how the same general notation may be used to
describe the essential parts of either retardation or
relaxation response.

5 B. Gross, Mathematical Structure of the Theories of Visco-
elasticity (Hermann & Cie, Paris, France, 1953).

6 H. Leaderman, Rheology, edited by F. R. Eirich (Academic
Press Inc., New York, 1958), Vol. 2, pp. 1-61.

7 A. V. Tobolsky, Properties and Structure of Polymers (John
Wiley & Sons, Inc., New York, 1961), p. 104,

All quantities appearing in Table III below the
fu(t) row pertain to the delayed or decay component
of the over-all system response. Therefore, the zero
and infinite retardation times arising from, e.g., J,
and 5 are not included in the L(r) retardation
spectrum. Thus, in the dielectric case the delayed
dielectric response function is e(tf) = e(t) — [e. +
(at/CaRp) uo(t) = (& — e.)¥(t) and the frequency
response function e;(w) is the usual [€¢(w) — e.)
when B, = .

A number of important relations between quanti-
ties in the “General” column are given in the Ap-
pendix. These also hold for the specific retardation
or relaxation cases but are summarized most con-
veniently in terms of the present generalized nota-
tion. Further relations between the general quantities
are given elsewhere.® Finally, because of the linearity
assumed in the present work, step-function charging
from an initial zero charge condition and complete
discharging curves, for example, should be of the
same form when R, = . Thus, if the normalized
step-function retardation response from ¢ =0 is
described by ¥ (), then the corresponding discharge
quantity, measured after complete charging and with
t =0 at the instant of discharge, will be [uo(¢)
— ¥(?)]. Such discharge, or its mechanical equivalent,
may be considered a relaxation process (here of
charge or strain, not stress), and it is only in this
case that the relaxation function ¢(f) equals the
corresponding strain function [ue() — ¢(£)] for the
same material.

8 Reference 2. See Ref. 17 for a discussion of changes needed
t? Ik{)ﬂfng full consistency between the present work and that
of Ref. 2.
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TasLE III. Relations between general and specific response functions.
Retardation Relaxation
General
Mechanical Dielectric Mechanical
a(t) /o, V@)V, f(®) (normalized e(t) /e,
forcing function)
e(t)/o, «a()/V, 7.(t) (normalized aa(t)/e,
response function)
0] 0 {z(m =0
£(t) f(w) = 1
40} A) A = ¢ 5(t) — $(t)
_ $(0+) = 1
u, () — E(8) o(t) {¢(°°) —0
G(r) G(r)
L(r)/Ja F(r) F(r) = rG(r) H()/Gs
J¥(w)/Js = [Ji(w) Qliw) = ef (1w) Q(iw) = J(w) — tH (w)
— 1J) (w)]/Ja ©) = € — €w
Ji(w)/Ja J(w) = ei(w)/ (& — €o) J (@)
' (@)/Ja H(w) = & (w)/ (e — €a) H(w)
Q(iw) =1 — Q(iw) G¥ (1w)/Gs = [Gi(w)
+ 16" (w)]/Ga
1 —J(w) Gi(w)/Gs
H(w) G (w)/Ga = Gi' (w)/Ga

THE SUPERPOSITION PRINCIPLE

The superposition principle for our three present
cases is frequently expressed in the form®*®

o(t) = /;wé(r)G(t — 7)dr,

e(t) = /_m&(T)J(t — 7)dr, (2)

qt) = /;mV(T)C(t — 7)dr,

where the forcing function may be switched on at
any specific time. For simplicity, we now change to
a more general notation which may represent any
of these cases. Then one may write,

10 = [ dene—nar = [e-momar, @

where the second result follows by transformation
of variables® and 6(t) may be G(¢), J(), C(t), £(),
¥ (t), or ¢(f). We shall not necessarily require 6(0+)

= 0, as is the case for ¥(f), but shall take f(— )
= 0. In general, f(t) and 6(¢) will involve impulse
functions, such as uo(f), 6(t), etc. To ensure proper
spanning of such functions, the ¢ limit in (3) must be
replaced by t+ or + «.° Then the O limit in the
second expression of (3) becomes 0— or — . In
the latter case, (3) is transformed to the usual form
of the convolution integral’® When f(t) = o(?)
= golo(t), for example, and 6(f) = J(f), the super-
position integral leads to 7(f) = g/ (f) = €(f), in
agreement with the result in Table II for this case.
The superposition integral is most frequently
employed with forcing functions which are applied
at ¢ = 0; therefore, we shall now consider various
ways the integral can be expressed in this general
case, a case where f(f) and 6(t) will involve impulse
functions centered at the origin. Then transformation
9 B. Gross, Lineare Systeme, Suppl. Nuovo Cimento 3, 235
(1?05(13) T. Hirschman and D. V. Widder, T'he Convolution Trans-

form)(Princeton University Press, Princeton, New Jersey,
1955).
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of variables, differentiation, and integration by parts
leads to the following equivalent forms,

r(t) = /_:f(‘r)ﬂ(t — 7)dr = f_wf'(t — 7)0(7)dr,
-4 / 1= D = o / @0 — s,

= _/;:f(r)ﬂ(t — 7)dr = f_:f(t — 7)é(r)dr, 4)

where we have used f(f) = 6(tf) = 0 for ¢t < 0, and
where the integration can be reduced, if desired, to
the range (0—, {+) because of the above conditions
on f(t) and 6(t). Further reduction of the range to
(0, ?) is, in general, not permissible, because impulse-
function contributions to the superposition integrals
would not then be properly included. It is readily
shown that r(f), proportional to current in the di-
electric case, is given by equations of the same form
as (4) with the function of ¢ under the integral sign
replaced by its derivative. In the dielectric case®
8(t) = B(t) = A(t), where B(t) measures the current
impulse response.

The particular form of the integrands in (4) is
required by the principle of temporal antecedence of
stimulus with respect to response.’ Thus, in the case
considered, where the stimulus and response were
tacitly assumed to be applied and observed at identi-
cal points in space, we have required that for all f(¢)
vanishing for ¢ < 0, the step-function response 6(f)
and the general response r(t) must likewise vanish
for ¢ < 0. This leads to the condition* 8(t — 7) = 0
for ¢t < 7. If one drops the assumption of spatial
localization, the relativistic analog becomes that the
response vanish at all points lying outside the for-
ward light cone emanating from the stimulus.
Analytically, this condition is 6(f — 7) = 0 for all
t — 7 < A(f), where A(?) is defined implicitly by
the equation [Iows(t) — rum(t — A®@))| = cA(); in
this equation rq.,(f) defines the “point”’ of observa-
tion of the response and ry;m(t — A) the “point” of
application of the stimulus at the retarded time
t— A.

The question of impulse functions in the integrands
of (4) is the subject of considerable confusion in the
literature, especially when the superposition integral
is written in some of the forms that are discussed
later. An effort to provide clarification has been
published by Gross and Giittinger®> but is insuf-
ficiently general in the forms used for f(¢) and 6(¢).

11 M. Bunge, Am. Scientist 40, 432 (1961).
( 12 B). Gross and W. Giittinger, Appl. Sci. Res. Sec. B: 6, 189
1956).
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First, it is clear that if f(¢) is applied at ¢ = 0 and is
zero for ¢ < 0, it must be of the form f(t) = fo(t)uo(t)
plus possible terms involving higher order impulse
functions, where fo(¢) is a continuous function of ¢,
is indefinitely differentiable, and may or may not be
zero at ¢t = 0. [For simplicity, we omit consideration
of the case where f(t) or its derivatives may be discon-
tinuous at points for which ¢ > 0.] Thus, even when
the higher order impulse terms in f(¢) itself are identi-
cally zero, it or one of its derivatives must be discon-
tinuous at the origin.

Secondly, since 6(t) = 0 for ¢ < 0, as discussed
above, 6(t) must also be of the form 6(¢) = 6,(¢)uo (%)
plus possible terms involving higher order impulse
functions. Again, 6(¢) or its nth derivative must show
a discontinuity at the origin. Examples are afforded
by C(¢) and G(¢) of Table II, where the former in-
volves a term C.uo(t) and the latter involves both
uo(t) and §(f) terms.

Several authors have attempted to avoid the
difficulties raised by the above discontinuities by
specifying that such functions as f(t) and 6(¢) [or
J ()] are continuous and that delta functions, when
they appear, are to be handled by summations in-
stead of integrations. However, we have seen that
f() and 6(¢) cannot be continuous functions; they are
continuous only when the w,(¢) terms are incorrectly
omitted from f(¢) and 6(¢). It has apparently been
felt by many authors that when f(¢) is applied at
t = 0, setting the lower limit of the superposition
integral to zero and using continuous functions in
the integrand is an adequate procedure. This is not
the case in general if it is correctly required that »(z)
be zero for ¢ < 0 and differentiable to any order, and
is not even correct for r(f) itself in many cases of
practical interest. It is hazardous also to omit the
uo(t)’s from explicit expressions for f(t) and 6(f) even
when it is stated, instead, that they are zero for
¢ < 0.Such a procedure may make it appear that the
time drivative of f(£) = fo(t) [f(t) = 0, ¢t < 0] is fo(¢)
[f(t) = 0, t < 0], whereas the correct result is f(t)
= fo(£)8(t) + fo(D)uo(t).

The superposition principle for stimulus first
applied at ¢ = 0 is sometimes written in one of the
following forms,

r@) = / J@)o = rydr, [7] (3)
' = 1000) + [ 10~ perar, 16,13 ©

13 Reference 3, pp. 15, 16.
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r® = 000 + [ fe i, 14 @

+0 = 5000) + [ foi—nar, 115,16 ®)

() = £0)6(t) + _/O_f(r)é(t —7)dr, [17] 9)

+0) = 50-200) + [ f@e —nar, 14 (10)

where the numbers in square brackets are pertinent
references. As is shown subsequently, none of these
expressions is sufficiently general to apply without
further qualification.

In order to obtain equations to compare with (5)
through (10), contributions from impulse functions
must be brought out from under the integral sign in
equations such as (4). In general, such separation
requires care, and there is the possibility of non-
commutation of products involving higher order
impulse functions. These matters are considered in
the general case in a later paper.”® For the present,
however, we may select the simplified case specified
by f(&) = fo(t)ue(t) and 8(t) = 6o(t)ue(t), Where fo(f)
and 6,(¢) are “good’’ functions involving no impulses
and are continuously differentiable. The latter condi-
tion is necessary to ensure that all resulting equations
can be indefinitely differentiated. We obtain

' = 58O + 10 [ o8~ D, A1)

r0) = JOBO) + w®) [ fit ~ Db, (12)

14 J. R. Macdonald, J. Appl. Phys. 32, 2385 (1961). Quanti-
ties such as y(¢) of this reference are not normalized to unity.
When normalization is possible, equivalence with the present
work is established by selecting the quantity ¢ such that
Y(o) = 1 and taking J4M = 1. All explicit expressions for
¥(t) and A(t) in this paper should be multiplied by uo(¢) on
the right-hand side of each equation.

15 J. R. Carson, Electric Circuit Theory and the Operational
Calculus (Chelsea Publishing Company, New York, 1953),
2nd ed., p. 16.

16 M. F. Gardner and J. L. Barnes, Transients in Linear
Systems (John Wiley & Sons, Inc., New York, 1942), p. 234.

17 Ref. 2, Eq. (2). The r(¢) of this reference is the present
7(t); also Eq. (2) is only equivalent to the present Eq. (9) if
the A(¢) used in Ref. 2 1s identified with the present 6(¢). This
requires that the A(¢) of Ref. 2 be zero for ¢ < 0 and, there-
fore, that explicit equations for it involve impulse functions.
This requirement, unfortunately, has not been entirely fol-
lowed in Ref. 2. Consistency necessitates that the following
changes be made. Replace the ¢ limit by ¢+ in Egs. (1) and
(2) and eliminate the first equation of Eq. (2); eliminate the
A(0)s8(t) term from KEq. (5) and the A(0) from 33; in all ex-
plicit results for 7(¢), A(¢), and B(¢) multiply all terms not al-
ready implicitly or explicitly involving impulse functions by
uo(t)—thus, e.g., (27) and (28) would not be changed but
(47), (48), and (63) would be; finally, add the condition in
Appendix I that if g(y) is the result of a generalized Fourier
sine or cosine transform it must be taken zero for y < 0.

18 Work in progress of the present authors.
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(1) = £6(0)0(2) + fo(£)00(0)uo(2)
ol [ @b —nar (3)
() = f(1)66(0) + £(£)60(0)
) [ A~ b, o)
HO) = KO + 5060
o) [ Bon —nar, ()

where it will be noted that only “good’” functions
appear within the integrals and that quantities such
as f(0) and 6(0), which are often left ill-defined, no
longer appear. An alternative way of writing Egs.
(11) through (15) is to change the limits to 0+ and
t— and then, if desired, use the complete functions
f(®) and 6(¢) rather than the present “‘good’ functions
in the integrand. Note that when 6(f) involves 4(¢),
as does G(f) when n # 0, the above equations are
imsufficiently general and it is simplest to use one of
Eqgs. (4).

Next, we compare the predictions of Egs. (5)
through (10) with the results (11) through (15). The
comparison may be made on the basis of using con-
tinuous functions in (5) to (10). On taking f(t) = fo(¢)
and 0(t) = 6(¢), one finds that Eqgs. (5) and (7) give
the correct answer if r(¢) is explicitly stated to be
zero for ¢ < 0 or if the results are multiplied by w,(?),
an equivalent procedure. Equation (6), however, does
not yield the proper result because the range of
integration remains (0,%) and does not become
(0,t). Further, uo(t) needs to be added to each of the
results of Egs. (8), (9), and (10). In addition, how-
ever, it is found that the term fo(£)6o(0)uo(f) is missing
from the predictions of these latter equations. More
terms will be missing from higher derivatives of »(?)
when continuous functions are used.

Secondly, comparison may be made on the basis
of the use of the proper functions, f(f) = fo(t)uo(?)
and 0() = 6o(H)ue(t), in Eqgs. (5) to (10). In order
properly to span all impulses, the limits of the
integrals should all be changed to (0—, t+4) or
(— o,o). With this change, Eq. (5) becomes identi-
cal with one of Eqgs. (4) and is correct. All the other
integrals can then be paired with one of the forms in
(4) or with the results for #(¢) following from (4). It
thus follows that Xqgs. (6) through (10) with their
limits properly extended will only give correct
answers in the present case provided that 6(0)
= 0,(0)uo(0) and f(0) = fo(0)uo(0) are zero. This is
only the case, in general, if u,(0) = 0. This require-
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ment is, however, not consistent with 8(¢) = o(¢)
and the use of a delta function centered around
t = 0. Further, it serves no purpose to put in such
terms as f(£)6(0) if they are to be eliminated. On the
other hand, if the limits of all the integrals in (5)
to (10) are changed to (0+,t—) to exclude contri-
butions from discontinuities, difficulties still arise
from the consequent omission of ue(f) multiplying
the integrals and the incorrectness of the added
terms in the equations.

In conclusion, it appears that the safest procedure
for calculating r(f) or any of its derivatives by a
superposition integral is to use one of KEqgs. (4)
together with functions under the integrand that
explicitly include impulse-function terms such as
uo(t) or 8(t) which ensure that the functions are zero
for¢t < 0.
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APPENDIX: SOME GENERAL RELATIONS

N P (" G@)dr
Q(p) = /O_A(t)e dt = efA@®)] = | T
- | fo, (A1)

where Q(0) = 1, £ denotes the Laplace transform,
s = In(7/ 1), and 7o is an arbitrary positive number.

30 = 1+ [ s@e™at =1 - [a()
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=1- Ow"lc%f—: = /‘” (T—-f-—p'r) G(r)dr
= f_w (ﬁ) F(r)ds . (A2)

When the comple}f_ variable p approaches 7w, then
Q(p) — Q(iw) and Q(p) — Q(iw). It follows that

® Q(r)dr ®  F(r)ds
J(w) = = A
@) o 14 (wr) -1+ (w‘r)2’ (A3)
1- J(w) = [) %G(Tﬁﬁ'
_ 7 e
f_ T oy T, (A4)
* (wr)@(r)dr * (wr)F (r)ds
H w) = ,————— = -—
=] 1+ (@r)’ 7o 1+ (wr)"’ (45)

A0 = £7QM)] = w(®) /: [Q@} " dr

wolt) f_ [%T—)] s, (A6)

£(t) = fo iA (x)dz = [1 - fo wG(-r)e"/’dr] uo(t)

= [1 — /_:F(r)e“/’dsil uo(t) .

Finally, J(w) and H(w) are connected by the Kronig—
Kramers relations.? Those of the above equations
involving = may conveniently be alternatively ex-
pressed™ in terms of z = 7o/7 = exp (—s).

(A7)



