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A material is considered which has one or more thermally activated linear response functions that obey
Boltzmann statistics to good approximation. These response functions may, for example, be mechanical or
dielectric relaxation times, diffusion coefficient, viscosity, etc. Neither the entropy change, AS, nor the
enthalpy change, AH, in the activation process need be temperature-independent. An expression for AG, the
Gibbs free-energy change in the thermally activated process, is considered which applies to a system with a
nonzero or zero glass transition temperature, T, and allows the product ci%cs? of the WLF polymer equation
to be interpreted and its variation with material explained by an activation energy model. Explicit expres-
sions for the resulting temperature-dependent A.S and AH are given which involve the material parameter E;
this is the enthalpy and activation energy of the process only when T;=0 and thus an Arrhenius equation
applies. The results pertain to mechanical and dielectric dispersion experiments on amorphous polymers and
other glass-forming materials. In addition, they apply to such processes as diffusion by a vacancy mechanism,
to viscous flow, and, when T,=0, to intrinsic semiconduction and many other processes. It is found that the
Lawson-Keyes relation, AS/AH~4a, should not be applied when 7,70 and may be very inaccurate even in
the case where T,=0. An improved relation between AS and AH which holds for 7,=0 is presented; it
furnishes a possible explanation for the negative value of AS sometimes found experimentally. An expression
for AG correct to first order in pressure and temperature is given which applies to all situations where an
Arrhenius equation is found. On identifying the semiconductor energy gap for thermal activation as a Gibbs
free energy difference, the results are illustrated by analyzing pressure and temperature data pertaining to
intrinsic semiconduction in Si and Ge. Experimental dielectric dispersion results for isoamyl bromide (74#0)
are also analyzed and compared with results of previous work. Finally, temperature-dependent aspects of the
transient and frequency response of a distributed, linear activated system with 7,70 are examined when
either the pre-exponential factor or the activation parameter E is distributed, or when they are simul-
taneously distributed and are linearly related.

INTRODUCTION (1) is the only type of temperature dependence for AG
which leads to the usual situation of temperature-inde-
pendent AH and AS. These results were later used in a
theory of the transient and temperature response of a
distributed, linear, thermally activated system.® They
may only be expected to apply within a temperature
range where there is no phase change. Certain further

consequences of AG’s of the type of (1) are discussed

HERE is a considerable and growing body of evi-

dence which indicates that for many thermally acti-
vated mechanical' or electrical® processes in solids and
liquids the ratio of entropy and enthalpy of activation,
AS/AH, is approximately a temperature-independent
material parameter, of order 10-3(°K) . Such a result
follows from the diffusion theory of Wert and Zener,?

and Keyes* showed empirically that AS/AH~4q«, where
a is the isobaric coefficient of thermal volume expansion.
A considerable body of polymer mechanical relaxation
results has been shown by Eby! to lead to excellent
agreement with the above relation.

Alternatively, the author’ showed that if AG, the
work required for a transition from minimum to maxi-
mum Gibbs free energy in surmounting a potential
barrier, is written as the following physically reasonable
function of temperature:

AG=E[1—(T/Tv)], (1

then AH=E, AS=E/T, and AS/AH= Ty . Here, the
activation energy E is temperature-independent, and

1R, K. Eby, J. Chem. Phys. 37, 2785 (1962).

2 A. W. Lawson, J. Chem. Phys. 32, 131 (1960).

8 A. W. Lawson, J. Phys. Chem. Solids 3, 250 (1957).

4 R. W. Keyes, J. Chem. Phys. 29, 467 (1958).

8 K. Higasi, Didectric Relaxation and Molecular Struciure
(Monograph No. 9, Research Institute of Applied Electricity,
Hokkaido University, Sapporo, Japan, 1961), Chap. II.

8 C. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).

7J. R, Macdonald, Physica 28, 485 (1962). See also G. H.
Vineyard and G. J. Dienes, Phys. Rev. 93, 265 (1954).

later in the paper.

The above form of AG leads to an Arrhenius equation
for processes such as self diffusion in solids, viscosity
of liquids, and mechanical or dielectric dispersion. When
there are several different dispersion processes exhibit-
ing Arrhenius behavior within the temperature range of
interest, each may involve different values of E and 7.
When, however, the process is primarily associated with
the underlying pure material and not with potential
barriers associated with such impurities and other de-
fects as occur in thermal activation of electrons to
the conduction band from donors in semiconductors,
then T, may be expected to be around or above the
maximum temperature of the phase, for example, the
boiling point in liquids or the melting temperature, 7.,
for solids.

Diffusion data for solids suggest that 743> 7. In fact,
when Ty !is set equal to 4« and the relation a7,,~0.06,
appropriate to metals and ionic compounds? is used,*

8 J. R. Macdonald, J. Appl. Phys. 34, 538 (1963).
9 C. Zwikker, Physical Properties of Solid Materials (Inter-
science Publishers, Inc., New York, 1954), p. 158.
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THERMAL ACTIVATION RELATIONS

one finds T¢=>4.2T,.. Generally, smaller values than 4.2
are obtained if 7Ty is related to the temperature coeffi-
cient of the shear modulus of metals, as in the theory
of Wert and Zener.8® Finally, Eby! has shown empiri-
cally that for certain polymers Ty~ Th.

Since AH and AS are not always temperature inde-
pendent, it is of interest to investigate the consequences
of a more general form for AG which is closely related
to and sheds light on the Williams—~Landel-Ferry
(WLF) equation," which applies to a wide variety
of mechanical and dielectric dispersion measure-
ments on polymers.'2 The results apply, as well,
to inorganic glasses® and to organic liquids which
form glasses at low temperatures.!®* Methods of
analyzing data for materials with glass transitions are
discussed and illustrated, and a generalization is given
of earlier work® on the response of distributed systems.

THERMODYNAMIC QUANTITIES
The specific AG to be investigated is

AG=E[1—(T/To) [T/(T—T)], (2

where E is again taken temperature-independent and
T.(KT,) is generally 10 to 100 deg below the experi-
mental glass transition temperature,'?1® 7. This equa-
tion is taken to apply over at least most of the tempera-
ture region T,<7T < Ty, provided there are no phase
changes inside this span and only a single thermally
activated process is of importance in the range of inter-
est.

Let us now introduce the normalized quantities
x=T,/T and m=Ty/T,. Then (2) becomes

AG= E[1— (mx)"]/[1—«]. (2)

The corresponding enthalpy and entropy of activation
at constant pressure follow immediately from the rela-

tions
_[9(aG/T)
o ‘[ 3(1/T) ]

and AS=T1(AH—AG) =—[d(AG) /3T Jp. In terms of
normalized quantities the temperature-dependent re-
sults are

AH=nE/(1—x)? (3)

_ (E/Tv) (1—2x+ma?)
B (1—x)? ’

AS (4)

10 C. Zener, Imperfections in Nearly Perfect Crystals edited by
W. Shockley ef al. (John Wiley & Sons, Inc., New York, 1952),
p. 299.

1 M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem.
Soc. 77, 3701 (1955).

2 T D. Ferry, Viscoelastic Properties of Polymers (John Wiley
& Sons, Inc., New York, 1961), pp. 212-228.

13D, W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484
(1951).

14 D, J. Denney, J. Chem. Phys. 27, 259 (1957).

5 R, H. Cole, Ann. Rev. Phys. Chem. 11, 149 (1960).
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Fi6. 1. Semilogarithmic plot of the ratio ToAS/AH vs =T/T
for various values of the parameter m=T'o/ T

where n=(Ty—T,)/To=(1—m™"). Note that when
T=T,, AH=E/n and AS=E/nT, Since m may be
expected to range from perhaps 2 to 8 or 10, # will corre-
spondingly vary with material from about 0.5 to 0.9.
Finally, Eq. (2) leads to

AS/AH= (nT,) 1 (1—2x+ma?), (5)

which reduces to the T,=0 value of Ty at T=1T.
Figure 1 shows how TyAS/AH varies with x for several
values of m. The possibly nonphysical region x<m™!
(i.e., T>Ty) is shown dotted for each curve. It is clear
that for reasonable values of 7 there is no appreciable
temperature region where the ratio is temperature in-
dependent.

It should be pointed out that AH and AS obtained
as above from AG are good thermodynamic variables.
Davidson and Cole® have mentioned in a similar situ-
ation that the entropy and activation energy could not
be deduced. Further, Williams, Landel, and Ferry
have given an equation, equivalent in form to (3), for
what they term the apparent activation energy. AH is
here actually the real enthalpy or heat of activation.
When AG and AH are temperature dependent, the term
“activation energy,” if used, should be precisely defined;
it is not employed in the present work except when
AH=E and it is thus temperature-independent.

THERMAL ACTIVATION

For a thermally activated system obeying Boltzmann
statistics we may write quite generally %710

7(T)=74(T) exp(AG/kT), (6)

where 7(T) is the relaxation time for the process. When
there is a distribution of relaxation times, 7 is taken as
the most probable value. Although the present treat-
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ment is carried through in terms of mechanical or dielec-
tric dispersion relaxation times, it applies as well, for
example, if 77! and 747! are replaced by appropriate
diffusion coefficients.®

The quantity 7¢(7) is an inverse vibrational fre-
quency or an attack or dwell time. There is consider-
able controversy whether it is a function of temperature
or not.810.16 Rate theory ¢ yields 74(T)=2ph/k T, where
# is the number of equivalent paths by which a transi-
tion may occur. Wert and Zener® and Zener, on the
other hand, have advanced a cogent argument to show
that when 7(T) is written in the form (6), involving
the actual change in Gibbs free energy, 7¢(7") does not
contain the 7 factor. For generality, we use 74(T) to
include both possibilities and write 4 for 7¢(I") when
no temperature dependence is to be understood.

From mechanical and dielectric dispersion measure-
ments one may obtain 7(7). The problem then remains
of obtaining important material parameters from results
for 7(T). In the present situation, the temperature-
independent parameters to be obtained are £, Ty, T,
and possibly 74. An example of their derivation from
pertinent experimental data is presented later.

In the present instance of a relatively complicated
AG, there are a number of seemingly different but equiv-
alent ways 7(7) may be written. When Eq. (2) is
substituted in (6) and various rearrangements are
carried out, we find

7(T)=7a(T) exp(;% fi—TZ) 0
—ET*-2T T+T1,T,
={Td(T) CXP[k_To (T— T+)2 :”

nET/k

xlea| g ™
LG}

In Eq. (7), the first term in parentheses includes the
contribution from the temperature-dependent AS, while
the second exponential term contains the heat of acti-
vation, AH. It is clear that this form of 7(7) is not
very practical for deriving parameters.

Equation (7”) is of the form

r=A,exp[B/(T—T,)], (8)

first apparently suggested by Vogel®® for temperature
dependence of viscosity and frequently used in analysis
of dielectric measurements on glass-forming mate-

18 R, H. Doremus, J. Chem. Phys. 34, 2186 (1961).

178, Glasstone, K. J. Laidler, and H. Eyring, The Theory of
Rate Processes (McGraw-Hill Book Company, Inc., New York,
1941), Chap. IX.

18 1, Vogel, Physik. Z. 22, 645 (1921).
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rials.1¥-15.19.20 Here B is temperature-independent, as is
Ay if 7a(T) is taken as 4. There is considerable tempta-
tion when (7T) is written in the form (7") to identify
AS=E/Tyand AH=nkE. This is incorrect; although

_ kdIn(r/7.)
d(T—Ty,)™"
this procedure does not give the real, temperature-
dependent enthalpy, AH. In this derivative 7, is an
arbitrary, temperature-independent normalization re-

laxation time, and 74(7T) is again taken temperature-
independent.

RELATION TO THE WLF EQUATION

Let us introduce the new normalized variable

7(T)/7a(T) ]
T(Tn)/Td<Tn)

_AG(T) AG(T.)
T RT kT,

when 7', is a normalization temperature conveniently

selected within the experimental range. [74(T%) /7a(T) ]

will either be unity when 74(7) =74 or (T/T,) when

the ordinary rate-theory pre-exponential form is used.
From (2) and (9) we obtain

Z(T)EZ=ln[

(9)

EN(T\—T\T.—T
Z=(—
(kTo)(T,,— Tm)[T— Tm]’ (1)
which reduces to
e (-2 EE]
kT kT T—T,,
EN\mx—1
’(Ez_‘o)[ 1—x ] (an

where T,= T. The quantity

Z
(E/kTo)

is plotted vs x in Fig. 2 for several m values. The curves
in Fig. 2 are similar to those one might obtain directly
from 7(T) measurements and show the appreciable
curvature often found experimentally when 7,>0.

Let us now take T,= T, and Ty=T+c.?, where cy?
is a temperature-independent parameter appearing in
the WLF equation. We may now write from (10), since
Z=12,,

logi[exp(Z,) ]

_ (0.4343E)(T0— Tg+cg”)|: T,—T ] 12
kTo co? T— Tg+62‘7 ) ( )

(11996%3 Matsumoto and K. Higasi, J. Chem. Phys. 36, 1776
»D. W, Davidson, Can. J. Chem. 39, 2139 (1961).
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The WLF equation written for T,= T, involves the
parameter ¢,¢ and is?

logl()["( T)/+(T,)]= IOgloaT,,
=a'[(To—T)/(T—Tot+e®)]. (13)

Equations (12) and (13) are of the same form provided
74(T) =74. In this case, we may compare the equations
directly and obtain

. 04343(E/kTy) (To— Tytes)
Co¥

=0.4343nE/kcy0.

C1

(14)

This result provides a new and interesting connection
between the activation energy parameter, #E, and the
temperature-independent WLF product ¢,%?.

In the first discussion of the WLF equation, ¢, and ¢;
were taken as approximately 100°K and 9, respectively,
independent of material and temperature, and curve
fitting for different materials was accomplished by vari-
ation of the normalization temperature. The resulting
““universal” value for the product ¢ice corresponds to a
value of #E of 0.18 eV or 4.1 kcal/mole. Frenkel® has
given reasons for the small value and relatively small
variation with material of the activation energies for
diffusion and viscosity in liquids. Since these quantities
are usually closely related to the activation energy (or
energies) for mechanical or dielectric dispersion, the
same conclusions should apply to #E in the dispersion
case and explain why only fairly small variation should
be found in ¢co. In a listing presented by Ferry,” the
quantity cf¢ varies from 449° to 2305°K, but the
average value is about 1300°K. In this later work, the
quantities are referred to the glass temperature, and ¢,?
and ¢ are allowed to vary with material in order to
fit data for the various materials. For example, in
Ferry’s listing ¢,¢ lies between 20.2° and 129.4°K.2

Ferry® has pointed out that the WLF equivalent of
Eq. (3) yields a AH which reduces to 2.303kc % at
high temperatures. This quantity is equal to #E in the
present analysis. A more cogent limit to consider is that
at T'=1T,, near or above the highest experimentally
available temperature possible without phase change.
As already mentioned, the value of AH at this temper-
ature is E/n=ETy/(Ti—T,). This quantity may cer-
tainly be expected to vary somewhat from material to
material since E, Ty, and 7', are all specific material
parameters. Note that the quantity B of Eq. (8) is
equal to (nE/k) =2.303c,%,¢ when comparison is made
with (7”) or (10). It is not proportional to T, as
stated by Cole,” but to (Lo~ T,)/To. Matsumoto and
Higasi®® have written E/R for B, where R is the gas
constant and E is the same quantity appearing in their

2 Reference 12, p. 216.

2§, Frenkel, Kinetic Theory of Liquids (Dover Publications,

Inc., New York, 1955), pp. 202-204.
28 Reference 12, p. 219,
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[a6 /1] /[e/kTo]

7

[¥] 02 0.4 0.6 0.8 1.0

Fic. 2. The ratio[ AG/kT/[E/kTs] vs x for various m values,

Arrhenius equation. The more precise value for B of
nE/k (or nE/R in different units) has the virtues that
at T=Ty, B/(T—T,) becomes just (E/kT,), and a
necessary distinction is made between the case where
the activation energy is E and that where the heat of
activation varies with temperature. The value of nE
obtained from applying an equation of the form of (8)
to viscosity data for water has been incorrectly identi-
fied by Miller® as the true temperature-independent
activation energy for viscous flow. In cases where
T .50, the only meaningful activation energy is AG,
the temperature-dependent Gibbs free energy of acti-
vation.

Equation (13) has been derived by Williams, Landel,
and Ferry! by modification of a free-volume viscosity
equation of Doolittle.® % An equation of the same form
has also been obtained by Bueche,” who analyzed the
motion of a group of # polymeric segments. Doolittle’s
equation is in agreement with a wide variety of liquids
over a wide range of temperatures. Therefore, and
because the results will be useful later, the implications
of the unmodified form will be investigated.

Doolittle® wrote Iny=A+D(v/v;), where g is the
viscosity, 4 and D are constants, and we have written
D in place of Doolittle’s original B to avoid confusion
with the B already defined herein. Let v be the specific
volume; then the free volume vy=v—1, where 7 is¥
“the limiting specific volume to which a real liquid would
contract if it were to continue to be unassociated and

2 A, A. Miller, J. Chem. Phys. 38, 1568 (1963).

% A, K. Doolittle, J. Appl. Phys. 22, 1471 (1951).

26 A, K. Doolittle and D. B. Doolittle, J. Appl. Phys. 28, 901
(1957). See also M. H. Cohen and D. Turnbull, J. Chem. Phys.
31, 1164 (1959).

21 |, Bueche, J. Chem. Phys. 24, 418 (1956).
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undergo no phase change down to T=0.” The quantity
% is at least approximately equal to the limiting van
der Waals molecular volume. At least to first order, we
may write for T2 T,

(vr/90) =2 (v50/w0) ey (T—T,), (15)

where vy, is the value of v,at T= T, and oy is the isobaric
thermal expansion coefficient for the relative free vol-
ume. On making the assumption that viscosity and dif-
fusion or mechanical dispersion in liquids or noncross-
linked polymers involve the same activation processes,
we may write

1
D(f‘-’)=p[§‘i+a,(r— T,)] L
X/t Vo T'" Tm

This leads, with no further approximations or assump-
tions, to the relations

(16)

D==Zay(nE/k), (17)
6"=20.4343D (ne/vy,), (18)
I ( b jg/ %) . (19)

The expressions for ¢ and ¢ differ somewhat from
those derived by Ferry.** Note that the use of (15) in
Doolittle’s equation together with (19) makes it com-
pletely equivalent to Vogel’s® original viscosity equa-
tion. Doolittle's equation is, however, more general
since the temperature dependence of ve/vy is still un-
specified. D has been taken as unity by Ferry for simple
liquids. Note that through (17) this then leads to a
simple relation] between ay and E. Doolittle’s values
range, however, from 0.04 for Hg to 1.0 for CCls.

Note added in proof: M. Goldstein, J. Chem. Phys.
39, 3369 (1963), has recently given an interesting dis-
cussion of free volume, the WLF equation, and the
Doolittle equation.

The free volume approach has been questioned by
Gilchrist, Early, and Cole® who find that AG(T) in-
creases as the temperature decreases for 1-propanol and
glycerol held at constant volume. Thus, AG cannot be
a pure volume function, independent of temperature at
constant volume. It may be shown thermodynamically
that

(8AG/AT)y=—AS+(a/B)AV

= (aaa/B) AV,

where § is the isothermal compressibility,
AV =(3AG/3P)

is the activation volume, and ase= V{3V /3T ) sq. The
above experimental results are not inconsistent with
the present form for AG when T320 provided ase
is nonzero. It must be negative when AV >0 to accord
with the above results. Physically, the (JAG/3T)v

B A, Gilchrist, J. E. Earley, and R. H. Cole, J. Chem. Phys.
26, 196 (1957).

(20)

J. ROSS MACDONALD

term arises from the direct interaction of the activated
unit with its surroundings in the absence of dilation.
The dilation term which contributes to AS is that in-
volving (a/B)AV. Since AS may exceed (a/B)AV,
(8AG/8T)v may be negative.

EMPIRICAL RELATIONS (T,=0)

In this section we are concerned with some exact
thermodynamic, approximate thermodynamic, and
empirical relations between the thermodynamic acti-
vation variables AH, AS, and AV, Lawson? first inves-
tigated the approximate equation,

AVA(B/a)AS, (21)

and tested its applicability for diffusion data. This equa-
tion is an approximation to the well-known exact ther-
modynamic relation

AS=ﬂ"1(a—aAq) AV
= (xa/B)AV,
a version of (20). Here

(22)

X= 1— (aag/a) . (23)

Lawson felt that aag could be neglected, to good approx-
imation, compared to «. This is equivalent to assuming
that the dilation contribution to A.S is much larger than
that arising from the direct interaction of the activated
unit with its surroundings at constant volume. The data
of Gilchrist ef al® cited in the last section show this
assumption is invalid for the T,#0 case; in the present
section we cite instances where it is also very inaccurate
when Ty=0,

Keyest later suggested the nonthermodynamic expres-
sion

AV=(BAH, (24)

where ¢ (termed % by Keyes) was empirically deter-
mined from diffusion data to be 4. Lawson, Rice,
Corneliussen, and Nachtrieb® on the basis of a con-
tinuum model of the solid state later gave the explicit
relation ¢>~2(y—%), where v is the Griineisen number.
AV may thus be negative® when this expression applies
and y<#%. Keyes? also combined (21) and (24) to obtain

AS/AH~cq, (25)
The combination of (22) and (24) yields
AS/AH = xca, (26)

which we may take as an alternative definition of ¢.
Let us further define from such ¢ the quantity v,=
(¢/2)+4% to compare with v values obtained from other
kinds of measurements than those leading to AS and

# A. W. Lawson, S. A. Rice, R. D. Corneliussen, and N, H.
Nachtrieb, J. Chem. Phys. 32, 447 (1960).

(13)61}5 T. Payne and A. W. Lawson, J. Chem. Phys. 34, 2201
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AH. Note that such an equation as (26) should not be
applied in the limiting low-temperature region where
other processes, such as tunneling through a potential
barrier, dominate thermal activation.

Next, let us consider the applicability of such equa-
tions as (25) and (26) when AS and AH are temperature
dependent. When T,#0 Egs. (5) and (26) and Fig. 1
show that xce must vary strongly with temperature.
Only when T'= T is xca equal to T¢?, a temperature-
independent parameter. Now since xa=a—aag, a
quantity which should not vary strongly with temper-
ature, the majority of the strong variation of xca for
temperatures near T, when 7,540 must be associated
with ¢. But ¢ loses much of its utility if it is not at
least quasiconstant, relatively independent of material
and measurement temperature. Therefore, we believe
that (25) and (26) should not be applied at all when
T,5£0 unless an Arrhenius equation still applies.

In previous applications of such equations as (21),
(24), and (25), no explicit mention of temperature
dependence of , 8, and ¢ has been made, and it has
not always been made clear whether AS, AH, and AV
had to be temperature independent also. Lawson?® has
partly tested Eq. (25) (with ¢=4) using data obtained
from diffusion of various impurities into polyvinyl ace-
tate. He found that AS/AH was nearly constant (but
the constant was not quantitatively compared with 4a)
when AS and AH were determined from data taken
just above T,. The above considerations show that if
all AS and AH values were calculated from data taken
at the same temperature, say 7%, then AS/AH would
be found constant but not, in general, equal to 4e.
Instead, AS/AH would equal the value of xca perti-
nent at T=T\.

Lawson also tested (25) for impurity diffusion at
temperatures just below T,. If the measuring temper-
ature used was sufficiently below T, an Arrhenius equa-
tion should apply,®* and AS and AH should then be
temperature-independent. Even then, comparison of
AS/AH should be made with xca, not ca. When AS
and AH are indeed temperature-independent over the
temperature range of interest, (26) requires that xco
also be. Then we may write

To= (xca) . (27)

Note, however, that the T, applicable in the Arrhenius
temperature region below T, will in general be entirely
different from the 7, which enters into (2) and is
applicable for 7> T, We shall use the designation
T,=0 to indicate a temperature region of a material
where Arrhenius behavior is found. Thus, 7;=0 does
not necessarily mean that a material has no glass trans-
ition but rather that a temperature region where its
influence is negligible is being considered.

Finally, the question arises whether (26) can hold

31 Reference 12, p. 235.
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with xca= Ty temperature-independent but AS and
AH similarly dependent on temperature. Differentia-
tion of AH=T\AS yields (0AH/dT)p=To(8AS/3T)p.
But thermodynamics requires that (8AH/9T)p=
—T(3°AG/3THp and (dAS/dT)p=— (3*°AG/3T)p.
These results show that AS/AH can only equal a tem-
perature-independent constant when (8°AG/972)p=0.
When this is the case, AG must be of the form (1) as
far as temperature dependence is concerned, and AS
and AH are then themselves temperature-independent
and Ty=T,=0.

Lawson et al.® have derived a form of (24) for =0
where AG=AH, a condition satisfied by Eq. (1) but
not by (2). If we force (24) and (26) to apply for
T,50 as well as Ty =0, we may expect that the ¢ which
applies in the Arrhenius temperature range will be dif-
ferent from that for TS T,. Only the former can be
approximately identified with 2(y—%). Keyes® later
wrote (24) with AH replaced by AG, a slightly different
definition of ¢. When AH and ¢ are temperature-inde-
pendent, the definitions are only equivalent for low
temperatures where AG=2AH. As far as pressure de-
pendence is concerned, however, the situation con-
sidered by Keyes, we shall later see that the replacement
of AH by AG is permissible, at least to first order in
pressure, when AH is temperature-independent.

We now explicitly consider only the situation where
AS and AH are temperature-independent, and an
Arrhenius equation holds over the temperature range
of interest. We further restrict consideration to a tem-
perature range where there are no phase changes and a
single type of thermal activation mechanism is domi-
nant. The pertinent AG(P,T) may then be written as

a form of (1), where E is the activation energy at =0
and at the standard pressure P,. The quantity az, the
experimentally measurable isobaric temperature coeffi-
cient of AG, is taken temperature and pressure-inde-
pendent in the ranges of interest. Let us initially take
Bk, the measurable isothermal compressibility coeficient
of AG, only temperature-independent. It follows im-
mediately from (28) that AS=ag, AH= E[148:(P—
P,)], and AV=EBz+E(P—P,)(8Bs/dP)r. These
expressions for AH and AV, together with (24), lead to
a differential equation for 8z which involves the pres-
sure dependence of ¢f.

It has been found® that almost all of Bridgman’s
data on compression of liquids and solids can be repre-
sented very accurately over a wide pressure range by
an expression of the form® B=g,/[14¢8.(P— P.)],
where ¢ is a positive constant greater than unity. Let
us generalize this result by replacing 8 by ¢8 and g8, by

2R, W. Keyes, J. Chem. Phys. 32, 1066 (1960).

3 Unpublished work of the author.

% J, R. Macdonald and C. A. Barlow, Jr., J. Chem. Phys. 36,
3062 (1962).
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TasLE I. Data for Ge and Si.

Quantity Ge Si
[+ 3
2X10% 1.3X10750d
(°K)!
B
1.3%1072a,b 1X10712a
(cm?/dyn)
aE"
3.9%104 2.83%10-4
(eV/°K)
Br® (A)~—1.3X10"12k
~6.4X 107128
(cm?/dyn) (B) ~4.1X 1022
Ex
0.782t 1.205¢
(eV)
Trm(°K) 1210¢ 1693t
v 1.86i 1.96

8 E, M. Conwell, Proc. Inst. Rad. Engrs. 40, 1327 (1952).

b'M. E. Fine, J. Appl. Phys. 24, 338 (1953).

¢ M. E. Straumanis and E. J. Aka, J. Appl. Phys. 23, 330 (1952).

4 R. O. A. Hall, Acta Cryst. 14, 1004 (1961).

® From optical data.

fR. A. Smith, Semiconductors (Cambridge University Press, Cambridge,
England, 1959), pp. 351-368.

& Bg has been obtained using the value of E given. Although the difference
is small, we have used the value of E obtained by linear extrapolation to 7=0
rather than the actual value at T7=0.

b W, Paul, J. Phys. Chem. Solids 8, 196 (1959).

i H., Y. Fan, M. L. Shepherd, and W. Spitzer, Proceedings of the Conference on
Photoconductivity, Atlantic City, 1954, edited by R. G. Breckenridge, B. R.
Russell, and E. E. Hahn (John Wiley & Sons, Inc., New York, 1956), p. 184.

i D. S. Beers, C. D. Cody, and B. Abeles, Proc. Intern. Conf. Phys. Semi-
conductors, Exeter, England, 1962, p. 41.

k K. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C., Danielson, Phys.
Rev. 130, 1743 (1963).

(¢8)«. Then the differential equation may be integrated
for rational ¢, and, for ¢>0, the result is

Be={[1+¢(cB)n(P—P,) M1—1} /(P—P,)
g(cﬂ)n[‘l—%(q_l) (Cﬁ)n(P_Pn)—'_"']’ (29)

which, for real materials (¢>1), will decrease with
increasing (P— P,). Using this result for g, the result-
ing expressions for AG, AH, and AV are consistent and
correct to first order in (P—P,). A direct relation be-
tween Bz, ¢B8, and (P— P,) may now be written, but
unfortunately no accurate data to test it seem available.
Note that consistency with a pressure-independent
AS=ap requires, according to (26) that T, be propor-
tional to [14-B8g(P— P,)]. Any direct dependence of
ag on pressure would introduce a second-order pressure-
dependent term in AG and is beyond the scope of the
present first-order treatment. The pressure dependence
of To= (axc)™ inferred above is reasonable, however,
since « at least should decrease with increasing (P— P,,).

In the present T,=0 case, we may take v7,=0 in
Eq. (17), n=1, and ay=a. We then obtain

D=aE/k. (30)

J. ROSS MACDONALD

The D in (30) is related to viscosity in the liquid or
viscoelastic case, and (30) is, for this situation, based
on the validity of Doolittle’s equation and the equality
of the activation energy for viscosity and that for
mechanical or dielectric dispersion. In view of these
uncertainties and because D has no direct physical
interpretation for thermal activation in nonviscoelastic
solids, we shall take (30) as directly defining D, a
parameter which may be at least approximately related
to viscosity for liquids. The analysis of the rest of this
section will then apply generally to thermal activation
in either liquids or solids. It will not apply to polymers,
viscoelastic materials with 7520, except for activation
processes for which the pertinent AH and AS are
temperature-independent in the temperature range of
interest.

Keeping first-order pressure terms in AG but dropping
them in expressions for AV and AH leads to the relations

AS=agxcaE= (Dx)ck, (31)
EAV ERGB, (32)

(0AG/3T)v2 E(Br/B) as¢==—ax+E(Br/B)
=cEape=~—ag+tcEa, (33)

where for convenience (¢f). has been written as ¢f.
These results show that even when an Arrhenius equa-
tion is satisfied which arises from a AG correct to first
order in pressure, (JAG/dT)v and aag will be zero only
when

ar=E(Bg/B) a=Zc EackD, (34)

a relation which will certainly not be satisfied in general.

Note that in the present formulation of the situation,
there is really no question of comparing AS/AH and
xca. Rather, the constant ¢ must be obtained from g
and B values, then x obtained from oz and E values.
The pertinent comparisons will then be between x and
¢ and their expected values.

In order to investigate the application and implica-
tions of the foregoing equations, we need materials for
which as many of the above parameters are known as
possible. Among the very few substances for which
sufficient parameters are reasonably well known are the
semiconductors Ge and Si. The thermally activated
process considered should be one associated with bulk
properties of the material, and intrinsic activation of
holes and electrons across the forbidden energy gap E,
is suitable in the nondegenerate temperature range
where the Boltzmann distribution applies. Application
of the present results to intrinsic semiconductors require
that the (free) energy gap be identified with the Gibbs
free energy change of the thermal activation process,
AG. Such identification has been made by Brooks.®
When hole-electron thermal activation is written in the
form of Eq. (6), it is of interest to note that the analogue
of 74(T) is proportional to 73,

% H. Brooks, Advan, Electron. Electron Phys. 7, 85 (1955).
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TasrE 1. Derived quantities for intrinsic Ge and Si.

Quantity Equation Ge A St B
D (30) 0.181 0.182
¢ (32) 4.9 -1.3 4.1
X (31) 5.1 —13.9 4.4
cx ven 25 18
To/Tm (27) 1.66 2.51
E/kTo=ag/k (27) 4.5 3.3
arg(°K)™! (23) —~8.1X107¢ 1.94%1074 —4.42X1078
(eae/BYAV = (8AG/3T) v (eV/°K) (33) —3.1X10~ —3.0410™ —2.19X10™*
— (a/B)AV (eV/°K) (32) —7.7%X1075 2X10°® —6.4X1078
Dx 0.92 —2.53 0.80
T /v 1.50 —0.162 1.21

To use the present equations in analyzing experi-
mental data it is only necessary to establish that in fact
in the temperature range of interest an Arrhenius type
of equation is satisfied and so AS and AH are tempera-
ture-independent. When the Boltzmann distribution is
a good approximation, this is the case for intrinsic con-
duction in semiconductors, and such behavior is indeed
found® over wide temperature ranges for Ge and Si.
Keyes¥ has given a treatment of energy-band behavior
under pressure in semiconductors which depends on a
detailed model of the solid; alternatively, much can be
learned from the present approach which depends on
no more model than is specified by the general form of
AG given in (28), itself necessarily consistent with
Arrhenius behavior.

The starting data for calculations on Ge and Si are
shown in Table I; many of the values are imperfectly
known and may be in error by 109 or more. Since
there is some temperature dependence of a and 8, their
values have been selected as much as possible to be
appropriate to the relatively high-temperature range
where intrinsic charge carrier activation is usually ob-
served in Ge and Si. It will be noted that two quite
different values for 8z for Si have been given. The best
evidence seems to indicate that (A) is the more accu-
rate; however, we carry through the calculations with
both values for illustrative purposes.

The results of the calculations for Ge and Si are shown
in Table I1. Many of these results are not good to more
than one or two significant figures; thus, the near equal-
ity in the values of D must be a coincidence. It is of
interest to note, however, that Doolittle’s? experimen-
tally determined value for liquid Na is 0.179. Further,
the values of D calculated from (30) for GaSb and InP
are about 0.195 and 0.22; other compound semiconduc-
tors yield appreciably different results, however. The

% F. J. Morin and J. P. Maita, Phys. Rev. 94, 1525 (1954);
ibid. 96, 28 (1954).
% R. W. Keyes, Solid State Phys. 11, 149 (1960).

values of x are surprisingly large and show that its
replacement by unity, as in Eq. (21), is not at all jus-
tified for these materials. In fact, it should never be
approximated by unity without direct experimental
evidence.

The value of ¢ for Ge and that for Si following from
the much less likely value of 8z are rather close to the
value of 4 frequently assumed or empirically deter-
mined. On the other hand, the most likely value of ¢
for Si is far different from 4, and this value and that
for Ge lead to values of v,/y which suggest that the
relation ¢>~2(y—3}) is a poor approximation for thermal
activation across semiconductor energy gaps. This is
not surprising since the above expression for ¢ was
derived from a continuum model of a solid and involves
Griineisen’s law, which depends on molar volume and
specific heat. The values of v given in Table I are
derived, on the other hand, from thermal conductivity
measurements, Much lower values (giving worse agree-
ment between v, and v) are found from thermal expan-
sion measurements.® Although these measurements do,
in fact, yield a negative value of v for Si, this applies
only below 120°K. At room temperature and above
where the actual determinations of 8g were carried out,
the thermal expansion value of +y is about 0.4 according
to Gibbons.® Thus, it appears that ¢~2(y—1%) should
not be applied in the semiconductor energy gap thermal
activation case even as a first approximation. Instead,
where possible both ¢ and x should be calculated directly
from the data as in Table II.

Note that the addition of the second AV term in Table
IT to the first yields just —ag=-—~AS=(9AG/8T)e.
For both Ge and Sj, the first term arising from electron—
lattice interaction is much larger in magnitude than
the dilation term.

The two values of Dx near unity suggest that for
some materials the approximation Dx=1 may be valid.

%D, F. Gibbons, Phys. Rev. 112, 136 (1958).
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When this is the case, one obtains AS=ck=8(c/4)
cal'mole/°K, E/kTy=c, and agf=kSz. Many values of
AS do, in fact, cluster around 8 cal-mole/°K, but much
smaller and larger values are frequently found. Note
that when D=1 as well as Dx=1, aag=0. This conclu-
sion does not necessarily apply in the 7,520 case where
the situation is complicated by the strong tempera-
ture dependence of A.S and AH.
Next, let us write, in analogy to (9),

T (P) /el P)
Z() “mewn]

=[AG(P)—AG(P,) J/&T. (35)

It is probable that r4(Pn)/ra(P) may be reasonably
well approximated by unity in most cases of interest.
Now using (28) in (35), we obtain

Z(P)=Efg(P—P.)/kT. (36)

Since this result only holds to first order in (P— P,),
Bz may be replaced by (c8).=28. If Eq. (2) is modified
as was (28) so it is correct to first order in (P—P,)
and the product of first-order pressure and first and
higher-order temperature terms neglected, again all
pressure dependence will appear in AH and none in AS.
Then (36) will apply in the 7,70 case as well, but
xco will be pressure-dependent and Ty and T, will not
be, to this order of approximation. Ferry and Stratton®
have slightly modified an earlier expression of Cohen
and Turnbull® and arrived at a result for the 7,50
case similar to (36) but involving higher-order { P— P,)
terms as well.

There have been a number of instances where AS
has been found negative for a thermally activated sys-
tem apparently obeying an Arrhenius equation.®4 Un-
doubtedly, such results have sometimes arisen from
experimental inaccuracy or the use of toe simple formu-
las for AG or 74(T). The assumption of r4(T)=h/kT
when this value is inappropriate is perhaps the most
frequent cause of apparently negative AS. In addition,
errors in obtaining 7(7") may arise if a distributed sys-
tem is not recognized as such in the analysis.

The present results suggest another explanation for
AS<0. Equations (23), (31}, and (33) may be used
to show that when ¢Z0, AS will be negative if a=aag,
where the upper inequalities go together as do the lower
ones. Payne and Lawson® have considered Eqs. (21),
(24), and (25) with ¢=2(y—13) for a situation where
a and AV are negative. They calculate v from Griinei-
sen’s relation and obtain a value yielding c~—4.5,
whereas the Agl data they used yields a value of ¢
from 8z/8 which is very much larger in magnitude but
still negative. They then conclude from (25) that A.S,
a quantity for which no experimental value was given,

# 7. D. Ferry and R. A. Stratton, Kolloid Z. 171, 107 (1960).

“ Reference 5, pp. 12-13 and references cited therein.
4 G. J. Dienes, Phys. Rev. 89, 185 (1953).
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will be positive. The more appropriate Eq. (22) or (31)
shows that AS may, in fact, be negative if a>aaq.
Since aag cannot be calculated without a value of
AS=oqag, whose availability would obviate the need for
the test, it cannot be concluded from the available data
in the Agl situation whether A.S is positive or negative.
A conclusion that it is positive, is, however, unwar-
ranted.

There have been three main inputs to the analysis of
of the present section. One involves the AG of Eq. (28),
the most general form possible to first order in temper-
ature and pressure. The next is the assumption of a
thermally activated process which obeys Boltzmann
statistics so that (6) applies. The final input is Eq. (24),
[or (32)7], which defines the material parameter ¢. A
question of great interest is to what degree ¢ is universal.
This question must finally be answered by comparison
with experiment but a few comments are in order.

Although ¢ values obtained from diffusion data and
those obtained herein from intrinsic semiconduction
are reasonably close except for the value ¢c=—1.3 for
Si, and although the first two input assumptions dis-
cussed above hold in both situations, nevertheless, the
situations are considerably different. Processes such as
diffusion, viscous flow, and mechanical and dielectric
dispersion involve activation over a potential barrier
and AG measures the difference between an initial and
an intermediate or virtual state. On the other hand,
intrinsic or extrinsic semiconduction involves thermal
activation across forbidden band gaps and AG measures
the difference between initial and final states (in the
Boltzmann approximation). If we consider a single
material, one might expect that the ¢’s derived from all
processes of the first type might be at least roughly the
same but that they would be likely to differ appreciably
from those obtained on the same material from processes
of the second type. Also, although the latter values of
¢ may be expected to vary appreciably with different
energy gaps, the resulting values should still show some
connection with the underlying material. Finally, con-
sidering the two classes separately, one would expect
that the ¢ values, especially of the first type, obtained
from different but similar materials would vary rela-
tively little, or at most in a regular way, from material
to material. In the above comparison, we have neglected
possible temperature dependence of ¢, a possibility
which might somewhat complicate comparisons of the
above types. Since ¢ should not depend strongly on
temperature, however, comparison should still be
significant and should afford considerable insight into
thermally activated processes in solids and liquids.

COMPARISON WITH EXPERIMENT (7,>>0)

Here, we shall primarily discuss how 7(7) results
may be analyzed to obtain pertinent temperature-inde-
pendent parameters when 7(7'), or a physical analog,
is expected to be of the form (7).
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Eby! has investigated the applicability of Eq. (25)
with ¢=4 to mechanical-dispersion internal friction
measurements of a variety of polymers. AH and AS
were obtained from analysis of the simple rate theory
equivalent of Eq. (6) with p=1. Since it was recognized
that AH and AS are temperature-dependent for poly-
mers when 7'> T, an effort was made to avoid tem-
peratures near T, and it is stated that the derived AH
and AS values are averages characteristic of the tem-
perature midway between high- and low-frequency re-
laxation temperatures. Figure 1 shows, however, that
even when # is as small as 2, there is still an appreciable
difference for x>m between the actual value of
AS/AH and Ty, its limiting value when x=m"!, or
T=To. Now m will usually exceed 2, and it will fre-
quently be impossible to make measurements near
T=T,. Unless Eby was able to derive all his results
for AS/AH from data taken at T~T, for each of his
different materials, his values of AS/AH should not
equal (xca)r—re= Ty, much less 4. The fact that he
did find good agreement with 4« for many materials
suggests either that (x¢)r—ry>4 for these materials or
that the data or analysis were in error.

In order to obtain pertinent physical parameters from
7(P,T) data in the 74> 0 case, the following procedure
may be used. First, values of E, T, and T are derived,
when possible, from 7(7") data as discussed below. These
results, together with (5) and (26) allow the tempera-
ture dependence of xca to be obtained. Let it be assumed
that the temperature dependences of a and 8 are known
from other experiments. Then that of xc may be calcu-
lated and finally that of x if ¢ is assumed temperature-
independent. A more accurate procedure is to obtain
Be(T) at P= P, using {36) and measurements such as
those of Gilchrist ef al.® at different temperatures. Since
(32) will still apply if AS is sufficiently pressure-inde-
pendent, one may derive ¢(T) from these results.
Finally, x(T) may then be calculated.

Now let us assume that 74(7)=a,7*, where g, is
temperature-independent and s is a constant which is
either known or can be determined from the analysis.
Next, introduce a fixed normalization relaxation time
Tu, @ known value, and define for 7,20,

Zu=In[T*r(T) /ru}=In(ar/70) +4[(To—T) /(T— T)]
= A+BW, (37)
where we have used (7) and defined g=E/kT,. Note

that E is here an activation energy parameter but not
the activation energy unless T,=0. In (37),

A=ln(a/rn)—g  B=nE/k=(To—T.)g,

and W= (T—T,)". Although there are four unknown
constants in the first form of (37), the second form
shows that only 4, B, and T, may be independently
obtained from (7T) data. The situation is similar to
that when T,=0 and an Arrhenius equation applies.

1801

TasLE III. Least-squares parameters (Eq. 37)
for isoamyl bromide.

Quantity s=0 s=1

A —2.89 —1.60
B(°K) 588 522
Tx(°K) 94.3 96.1

4 0.9990 0.9983
S.D. 0.287 0.329

Without independent knowledge of 74(T), AS then can-
not be calculated, or vice versa.

Equation (37) may be analyzed by least squares by
assuming a series of values for T, carrying out least-
squares fitting, and picking that value of T, which
minimizes the sum of squares, The resulting final values
of 4, B, and T, are then best in a least-squares sense.
If there is doubt about the proper value of s to use in
the analysis, the above procedure may be repeated with
several s values and that which yields the minimum
sum of squares accepted.

Unless AS can be directly measured, as in the intrinsic
semiconduction case, independent knowledge of 74(7T)
or E is required to allow AS, or its principal parameter
Ty, to be obtained from 7(7) data. When the rate-
theory approach is used with 7';,>0, there will still be
doubt about its applicability® and about what value of
# to use. It is apparently worth emphasizing that when
(1) holds and an Arrhenius type of equation applies, a
plot of Z, vs T does not yield AG (unless To= ) as
Bhanumathi? has apparently assumed, but instead the
slope of the resulting straight line is E, the temperature-
independent heat or energy of activation, not the free
energy of activation. This error of interpretation leads
to the conclusion that the experimentally determined
pre-exponential factor should be identified with &/
when the simple rate-theory approach applies. Actually
the temperature-independent part of T7(T) involves
AS as well, explaining both the deviations from #/k
found by Bhanumathi and the variation found from
material to material.

In order to illustrate the analysis procedure, we have
analyzed dielectric dispersion data of Denny and
Glarum® on isoamyl bromide. In the temperature range
considered, 120°-300°K, there is some distribution of
relaxation times, and 7(7") values were obtained by the
above authors by fitting to a Davidson—Cole distribu-
tion. The 15 data-point values used are slightly uncer-
tain because of small uncertainties in the relaxation dis-
tribution parameter but are sufficiently good for illus-
trative purposes.

The direct least-squares results for s=0 and 1 are
shown in Table III; here 7 is the correlation coefficient
and S.D. the standard deviation. The very small value
of (1—7) indicates that (37) is a good fit to the data;

2 A, Bhanumathi, Indian J. Pure Appl. Phys. 1, 79, 148 (1963).
43 S, H. Glarum, J. Chem. Phys, 33, 639 (1960).
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Fi16. 3. p/po vs =T,/ T for m=2, =1, and various values of x.
Negative branches omitted.

further, T',, could be determined quite accurately by
the above trial and error procedure. The distribution
of errors for both s=0 and s=1 indicated, however,
that there are present principally systematic, rather
than random, deviations from (37). Such deviations
may arise from errors in the data or from progressive
failure of (37) to represent the data well.

Since B=2.303c,%c.¢ according to (14), the value of
588°K corresponds to ¢if%?=255°K, quite a bit lower
than the value of about 900°K originally used in the
WLF equation. Davidson® has suggested that a value
of c1%? of 985°K is characteristic of many liquids at low
temperatures. It does not seem characteristic of isoamyl
bromide. The values of r and S.D. in Table III suggest
that the choice s=0 is slightly preferable to s=1. The
differences are not statistically significant at the 0.05
level of significance, however.

Glarum® analyzed his high-temperature 7(7") values
for isoamyl bromide on the basis of an Arrhenius equa-
tion and obtained a value of 0.095 eV for the activation
energy. For a material with 7,50 the Z, vs T curve
will only be approximately a straight line when 7°>T,..
When also T,/ TyK1, the resulting apparent activation
energy is # E=E, but E is still not tke activation energy.
On combining the above value of E with the values of
B and T, in the table, one finds that it leads to Ty=
202°K when s=0 and 183°K for s=1. These values are
not sufficiently high that T,/T,<1. The curvature in
Glarum’s Z,(7') values was apparently largely ob-
scured by experimental error in the high-temperature
part of the temperature range; obviously, for a material
with 7,50, a wide temperature range extending as close
to 7'y as possible should be used. Direct calculation of nE
from the B values in the table leads to 0.051 and 0.045

J. ROSS MACDONALD

eV for s=0 and 1, respectively. If To= o, these are
also the values of E, not the activation energy but the
value of AH in the high-temperature limit.

Now if it is assumed that simple rate theory may be
applied to isoamyl bromide at least to determine 74(7),
then on taking p=1, one obtains a;=k/k=4.8X101
°K-sec. Together with the s=1 values in the table, this
value leads to g=—1.44, to To=—266°K, and finally
to £=0.033 ¢V. The ratio m is thus negative and the
entropy will be negative from T>T, up to the tem-
perature

| T |
{14 | To/T, |} -1

A much larger value of p than is physically plausible
would be required in order to make 7 positive when
a1 is taken as ph/k. Although a negative entropy change
is by no means impossible, its appearance here casts
some doubt on the applicability of the above expression
for a;. It should be noted, however, that in the diffusion
case, where the pre-exponential factor can probably be
determined theoretically to higher accuracy than that
represented by the assumption a;=7%/k, negative AS
values still sometimes appear.®#

TIME, FREQUENCY, ANDTT?];‘,&VIPERATURE RESPONSE,
]

The transient, frequency, and temperature responses
of a linear, distributed, thermally activated system
obeying Eq. (1) have been considered in some detail
In earlier treatments.”®% A distribution function of
relaxation times proportional to 7+ with a finite

2.0

| SUEDRESE e

3
A

e 3 e

F16. 4. p/po vs x for m=4, 6=1, and various values of x. Nega-

tive branches shown dashed and reversed in sign.

# J, B. Wachtman, Jr., Phys. Rev. 131, 517 (1963).
4% J, R. Macdonald, Annual Meeting, Society of Rheology,
Baltimore, Maryland, October 1962,
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range was considered and led to the possibility of time
dependence of dielectric discharge current, or rate of
strain, of the frequently observed form {~4+» (or of
this form but with different values of p for different
time intervals) for times greater than the minimum
(1) and less than the maximum (r;) relaxation time
of the system. Also, the sign and magnitude of p affected
the skew of a Cole-Cole frequency dispersion plot.7+19.45.46
The temperature dependence of p and of 7, and 7, was
examined when the original distribution of relaxation
times arose from a distribution of pre-exponential factors
only (8:=0), a distribution of activation energies only
(B1=0), or a simultaneously present distribution of ac-
tivation energies and a distribution of Inrs(8; 540, B270)
with E and Inrg linearly related. It was implicitly
assumed in this work that T, was not distributed (or,
more precisely, it was taken constant and so had a delta
function distribution).

Here, we present the generalization of some of the
above work appropriate when 7,70 and Eq. (2)
applies. Combining the earlier and present work, one
readily finds

p=\M, (38)
(ro/m) ="M\, (39)

where
M=+ (To—T)/(T—T.,)]. (40)

In these equations A, B, and 3, are temperature-inde-
pendent, positive or negative constants. Here, 7% is also
a constant, the value of 7o/7, when | M |=1.

Let us define 6=1 when 8,70 and 6=0 when 3,=0.
Further, let x=p8,/8; or 1 and po=A/B; or \/B: when
B1%0 or B;=0, respectively. When B,=0 there is no
temperature dependence of p and (r2/71), and this case

F16. 5. p/po vs x for m=10, =1, and various values of x. Nega-
tive branches shown dashed and reversed in sign.

% J. R. Macdonald, J. Chem. Phys. 36, 345 (1962).
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F16. 6. p/po vs x for m=—4, §=1, and various values of x.
Negative branches shown dashed and reversed in sign.

need not be further considered. We may now write

_ Po
CX[(To-T)/(T-T.)]

Po
S+x[(mz—1)/(1—2)7T
where we have again introduced the variable x=T_/T.
Note that ma=T,/T and when T.—0, (mx—1)/
(1—x)—(To/T)—1. Again, we have made the simplify-
ing assumption that T is not distributed and we shall
also take T, as undistributed. The present x should
not be confused with that used earlier in the paper.
Equation (41) shows that when 8;=0 so that only
the activation energy parameter E is distributed, p is
inversely proportional to the AG/kT given by (11);
thus the curves of Fig. 2 are then proportional to p%,
and we shall not present additional curves showing how
p depends on temperature in this case. Since both pp
and x may be positive or negative, temperature depend-
ence is more complicated when $;70, 3:540 and thus
6=1. When B, and B, have the same sign, the distribu-
tions of £ and Inrg are simply related.”®* When the signs
are opposite, the relation is between E and In(74) ™ and
x is negative. In the absence of specific, detailed mate-
rial information either possibility is equally likely.
Figures 3-6 show some of the curve shapes which
follow from (41) for d=1 and various values of the
remaining parameters. The parameter value given for
each curve is that of x. The dashed lines shown on Figs.
4-6 are negative values which have been inverted to
save space. For clarity, no negative branches have been
included in Fig. 3, although they exist in the case m=2
for all curves with x<0 and for x=1 and 2. As before,
curves for T> To(x<m™') are shown dotted except

P

(41)
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when they must be dashed. The point at x=m! is
shown by a heavy solid circle. Note that since pp may
be either positive or negative, the positive and negative
curves shown in the figures may individually lead to
either positive or negative values of p.

The pole where p/po changes sign occurs at a value
of x given by (1—x)/(1—myx). At points where
| p |, previous work shows that the distribution of
relaxation times reduces to a delta function.’** At the
same time, (39) indicates that when | p | > because
M—0, then ro/r—1, and there is only a single effective
relaxation time. Then simple Debye dispersion is found,
and transient response involves a single exponential
decay.

Data are lacking for a full, detailed comparison of
experimental p vs x curves with the theoretical curves
of Figs. 3-6. The theoretical curves are included here
to give some idea of the varieties of dependence possible
when the present model applies. In previous work,’4
o(T) data for the case T,=0 have been discussed which
seem to be in reasonable agreement with the predictions
of theory when E alone is distributed and when £ and
In7g are distributed and linearly related.

Williams# has recently presented data on polyoxy-
methylene from which p(7") values may be derived. For
this material, 7,~186°K, and Williams found dielectric
discharge currents which were approximately of the

4 G, Williams, Polymer 4, 27 (1963).
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form ¢~U+ for a variety of temperatures, The data show
that p is zero near T, increases to a maximum of 0.43
at 203°K, then decreases somewhat irregularly to —0.54
at 293°K, the highest temperature of measurement.
Williams explains the results qualitatively by means of
two different relaxation mechanisms. Since the curve
of frequency of maximum dielectric loss vs 7! pre-
sented seems smooth and of the form required by Eq.
(11), it appears that the model of the earlier sections
should apply over most, if not all, of the measured tem-
perature range. The p(T") results are then in approxi-
mate agreement with the predictions of (41) provided
there is ‘“‘damping” which causes the pole at
x={(1—x)/(1—mx) to be replaced by a finite doublet.
Then when pg, x, and m have the proper combination
of signs and magnitudes, p will be zero at T, will reach
a positive maximum, will decrease to a negative maxi-
mum, and will finally then decrease in magnitude as
the temperature increases. The necessary damping may
arise from the presence of a distribution of 7, and/or
T, wider than a single delta function and from other
causes of inexact correspondence between the ideal
model and the experimental material including even an
inhomogeneous temperature distribution in the sample.
A more precise treatment would require the calculation
of the standard deviation of the distribution of Z, when
E, In7g, Ty, T, and possibly T itself all were distributed
with separate but perhaps related distributions.
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