PROPERTIES OF THE TANTALUM-CARBON SYSTEM

for lower carbon contents, which may be real and point
toward an additional effect. A decision whether the re-
sistivity increase with decreasing carbon content is
solely due to increased vacancy scattering cannot be
made at present.
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We present several improvements in the calculation of the penetration parameter f, which is related to
ionic and electronic work functions. A regular, hexagonal array of adions which are imaged in a conducting
adsorbent plane is considered. The first improvement is the treatment of discrete adion charges and their
images as non-ideal, finite-length dipoles instead of ideal dipoles as in almost all earlier treatments. Next,
nonzero polarizability of adions is considered, discrete induced dipole moments are calculated in a self-
consistent manner, and the effect of induced-dipole images is included. When the polarizability is nonzero,
previous expressions for f are inadequate even when generalized in an obvious way, and an improved method
of calculating f is presented. The inclusion of polarization effects leads to significant changes in the depend-
ence of f on surface coverage of adions. Finally, f is calculated with and without polarization contributions
for the situation where redistribution of the adsorbed array upon removal of an adion affects the desorption
energy. Inclusion of redistribution also leads to appreciable changes in f. Under some circumstances, either
with or without redistribution contributions, it is found to be easier to desorb an adion from an array than
to desorb an isolated adion. In thiscase, the potential at the siteof a removed adion may exceed that far away
from the surface. To illustrate this phenomenon, which can lead to the establishment of a potential barrier
against electron emission, or to a potential well enhancing emission, we give some curves of potential vs dis-

tance from the electrode along a line perpendicular to the electrode and through a removed adion site.

INTRODUCTION

ONSIDER an infinite two-dimensional array of
ions absorbed on an electrically conducting plane
surface. The adion charges will be imaged in the absorb-
ent, forming an array of non-ideal dipoles. The array

penetration parameter f, which in its most basic defini- -

tion is essentially the ratio of the change of ionic to
the change of electronic work function upon adsorption,
is of considerable importance in the adsorption of ions
from a gas phase, and it or its equivalent has appeared
in a number of treatments of the adsorption of cesium
on tungsten and thermionic energy conversion.!—®

1 J. H. de Boer, Advan. Catalysis 8, 119 (1956).

2N. S. Rasor, C. Warner, II, and A. R. Vernon, Atomics
International Report No. Al-6799 (November 1961) pp. S51-
55, 81-109; C. Warner, II, and L. K. Hansen, Atomics Inter-
national Report No. AT-64-20 (November 1962-October 1963),
pp. 110-140.

3A J. Kennedy, Advan. Energy Conversion 3, 207 (1963).

*J. W. Gadzuk, MIT Quart. Progr. Rept. No. 72 (15 January

1964), pp. 166—171 No. 75 (15 October 1964), pp. 104-106.
5N. S. Rasor and C. Warner, J. Appl. Phys. 35, 2589 (1964)

8 J. W. Gadzuk and E. N. Carabateas, J. Appl. Phys 36, 357.

(1965).

In theoretical treatments of the penetration param-
eter, several different definitions and ways of calculating
fhave been introduced which, though generally assumed
to be equivalent to the foregoing definition, unfortun-
ately turn out to be nonequivalent to this definition
and to each other for finite adion polarizability e,
interaction with self-images, and the occurrence of adion
redistribution effects. While certain of these definitions
have no physical significance except to the degree that
they approximate to the actual quantity sought, others
possess a direct physical interpretation and, though not
representing the ‘“true penetration parameter” as
originally defined, are of sufficient interest in themselves
to warrant some discussion. Finally, whereas there is
one definition which is admittedly no more than an ap-
proximation to the measured f, the situation is not so
clearcut as regards the other definitions: In certain
cases, one manner of theoretically calculating f may
be proper, and in other cases the circumstances may
have altered enough to make another method appropri-
ate. It is the purpose of this paper to clarify for the first
time this situation by discussing and comparing several
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different theoretical objects, distinguishing them from
the “true f” by means of the humble, subscripted
names: fi, f2, and so forth. While we recognize that our
subscripted quantities may not end up being entirely
equivalent to the measured f, we shall nonetheless refer
to these theoretical constructs as ‘“‘definitions of f.”
Three different expressions for f are given below and
each is discussed in some detail for the general case
a7%0 later in the paper.

All published theoretical calculations of f thus far
have neglected adion redistribution effects and, except
for Ref. 5 (an oversimplified approach), have treated
the effective dipoles as ideal and the ions as non-
polarizable. We have recently developed a practical
method for calculating the field and potential exactly
anywhere in front of an infinite plane conducting sur-
face on which an infinite regular array of nonpolariz-
able ions are absorbed and imaged.” In the present paper,
which uses and extends this work, we wish to compare
the results for f for real, polarizable, non-ideal dipoles
with those of previous calculations and methods.

At absolute zero an adsorbed array of ions may be
considered rigid (except for minor vibrations arising
from the zero-point energy of the adions). As the tem-
perature increases, the amplitude of the vibrations
increases until finally, although the adions may still
remain strongly adsorbed, their position correlations
extend only over short distances and the concept of a
regular array is no longer applicable. We have estab-
lished approximate conditions for which a regular
rather than completely disordered array is a good
model,® and Vernon? has given preliminary considera-
tion to the direct effect on f of thermal disordering. His
approach has been somewhat extended by Gadzuk and
Carabateas.®

Since the effects of thermal motion may be considered
as perturbations to a regular array within the regime
where the two-dimensional discrete charge distribution
still retains appreciable long-range ordering, the in-
fluence of thermal disordering within this range will be
a perturbation to the fixed-array value of f. The effect
of this perturbation may be calculated separately by a
variety of techniques; thus, it is important to have a
reasonably accurate expression for f for a regular array
as the start of a calculation of f in the presence of some
thermal disorder. Such a calculation is in progress;
here we are solely concerned with regular arrays and
we ignore any vibration of the adions. This approxi-
mation is still a good one for many conditions of experi-
mental interest.®

" Since the surface of a metal is not a featureless con-
tinuum but a two-dimensional array of atoms, there will
be potential wells or preferred sites on it for the adsorp-
tion of foreign atoms or ions. In equilibrium at zero

7C. A. Barlow, Jr., and J. R. Macdonald, J. Chem. Phys. 43,
2575 (1965).

8 J. R. Macdonald and C. A. Barlow, Jr., Can. J. Chem. 43,
2985 (1965).
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degrees, all adions will be localized at such sites. On
the other hand, at nonzero temperatures where adions
have translational energy they may hop between sites.?
At still higher temperatures where the adions are still
strongly constrained to the surface by ‘“chemical” and
image forces, the influence of preferred sites becomes
small and the adions are no longer strongly localized
but can move relatively freely along the adsorbent sur-
face. This last condition may still be one, however,
where the mutual repulsion of the non-ideal dipoles
formed by the adions imposes appreciable long-range
order on the array. In this mobile case, the array will
tend to be hexagonal since this configuration maximizes
r1, the nearest-neighbor spacing, for a given surface
density N. Further, if the ions could be close-packed on
the surface, the array would again be hexagonal. In
neither of these cases would 7, be determined by the
number of preferred sites but instead r;= (4)!N—%, Note
that we can write N=0N,, where N, is the maximum
surface density possible in a monolayer’-® and 0<6<1.

The usual localized film model is one in which a frac-
tion 6 of N, regularly arranged sites is occupied.” Excel-
lent reasons for not calling this an immobile film have
been advanced by Holland® and by Ross and Olivier.!
We shall here be primarily concerned with mobile
adions and shall not consider this localized model in
further detail except to mention that when a=0 the f
appropriate to it can easily be derived from that of the
mobile model by a procedure discussed later.

Gadzuk and Carabateas® have introduced an un-
common definition for an immobile array. They consider
a cubic adsorbent with lattice constant d. A fixed,
square array is assumed to be present having a mini-
mum 7; of 2d when 6=1. A complete, regular square
array is also assumed to be present under other condi-
tions, but only values of 8 are allowed which are associ-
ated with », values of 2dn, where =1, 2, 3 ---. For
square arrays, 1 is then equal to 2d/(6,)¥; thus, 8,=#"2.
Except for the difference between square and hexagonal
arrays, the model is equivalent to the mobile model for
the above possible values of 6. Note, however, that
Gadzuk and Carabateas ignore the discreteness in 6
values occasioned by their model in plotting a curve of
f(0.). We shall later transform these square-array
results to a hexagonal basis for comparison with the
hexagonal, mobile model. The latter has also been used
by Kennedy® for adsorption of cesium on refractory
metals. Gadzuk and Carabateas have also introduced
an unusual definition for mobile films. Their definition
is equivalent to that we have termed localized films,

9 B. W. Holland, Trans. Faraday Soc. 61, 546 (1965).

1 J, R. Macdonald and C. A. Barlow, Jr., J. Chem. Phys. 39,
412 (1963); 40, 237 (1964). An important correction to some of
this work is discussed in the present Ref. 13.

1S Rossand J. P. Olivier, On Physical Adsorpiion (Interscience
Publishers, Inc., New York, 1964), pp. 13-15.
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types of films which have frequently been designated as
immobile in the past.12

In the present work, it is assumed that when the
adions are not close-packed there is no extraneous
polarizable material between them. If they had no
polarizability and were thus true monopoles, the
dielectric constant appearing in potential and field calcu-
lations would be unity. Although the polarizability of
adions is much smaller than that of adatoms, it is still
nonzero and cannot always be neglected.!®!® The de-
polarizing field of surrounding adions and their images
will induce an essentially ideal dipole in any given
polarizable adion. This dipole will then itself be imaged
in the adsorbent surface causing an increase in effective
adion polarizability and induced dipole moment.!013
Gadzuk and Carabateas have omitted all polarizability
effects from their calculation of f on the basis that an
approximate calculation with «70 leads to little altera-
tion in f values. By using the results of a much less
approximate calculation, we shall show that this is not
always the case.

DEFINITIONS OF f

Let us define the mean ionic charge density corre-
sponding to N adions per unit area as g,. We shall take
the conducting adsorbent plane to be grounded; its
charge density ¢ will then be just —g,. It will be con-
venient to take the zero of potential at the electrode and
define ¥, as the potential, arising from the adion-image
array, at an “infinite” perpendicular distance from the
adsorbing plane. For a plane array of infinite extent,
the distance to “infinity” is any distance large compared
to .. When the array is of finite size, the point at
“infinity’” must also be taken at a distance from the
surface small compared with the smallest linear dimen-
sion of the lattice. Note that ., is relatively independent
of array structure!®!; it will be independent when a=0
and when the array, even though thermally disordered,
is uniform in the large so ¢, is independent of locale.
Let AW, be the average electron work function change
on adion adsorption.” Then AW, may be defined as the
energy to remove to “infinity” an electron from the
surface in the presence of an adsorbed array minus that
required when no array is present. Since the work func-
tion of the bare surface is not included in .,
AW .= — e

In analogy to the above, let AW, be the change in
ionic work function on adion desorption. It is the energy
required to remove an adion from its equilibrium posi-
tion in the array to “infinity” minus that required in
the limit ¥ — 0, when the ion to be removed has
no neighbors. By definition then, we may write

12 A, R. Miller, Proc. Cambridge Phil. Soc. 42, 292 (1946) ; The
Adsorption of Gases on Solids (Cambridge University Press,
Cambridge, England, 1949), pp. 112-113.

13§, R. Macdonald and C. A. Barlow, Jr., J. Chem. Phys. 44,
202 (1966). The quantity p in this work is not the same as the p
of the present paper and that of Ref. 18.
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f=—AaW./2,AW,, independent of the sign of z, the
adion effective valence. Note that since an adion will
generally be bound chemically as well as electrically to
the adsorbent surface, W, should properly include a
contribution from such binding. To a good approxima-
tion, such binding should be independent of ¥, however,
at least until surface packing is very dense. With such
independence, chemical binding contributions will cancel
when the difference AW; is formed, and we thus ignore
them hereafter.

The energy of ionic adsorption will generally include
a part arising from redistribution of the regular array
to make room for an added adion. After adsorption and
redistribution, the array of mobile adions will still be
regular, but its 7, will be very slightly smaller. Inclusion
of the redistribution energy in the adsorption or de-
sorption energy is not always warranted, however. The
ionic desorption energy W; should include the redistri-
bution contribution provided desorption is quasistatic
or takes place in a time long compared to the array
redistribution time. Although the average 7, will be
infinitesimally changed by desorption of a single adion,
the nearest neighbors of this adion must move during
redistribution a distance of about r1/2. In many cases of
interest, they will approach their new equilibrium posi-
tions before the desorbed ion has left the immediate
vicinity of the surface. Under such circumstances, the
ionic work function should include the redistribution
energy contribution. We therefore include it in one of
our calculations of f. For completeness, we shall also
consider the case where the ion is removed from electri-
cal interaction with the surface in so short a time that
redistribution has not taken place and its contribution
can be omitted from the desorption work. Further, in
the case of localized adsorption, redistribution will be
impeded by the potential wells which localize adions and,
depending on the depth of the wells and the consequent
strength of localization, little or no redistribution may
occur during the time of removal of an adion on desorp-
tion from such an array.

Let us initially ignore redistribution energy and con-
sider the simplest, most usual, but least accurate expres-
sion for f. Let 2z be the distance coordinate perpendicular
to the adsorption plane and define 3 as the perpendicular
distance from the imaging plane of the adsorbent to the
charge centroid position of an adion. Contributions to
8 have been discussed elsewhere”%:14; it will be approxi-
mately equal to the hard-core radius of the adion. With
the adion itself removed completely, together with the
images of its charge and induced dipole, define the po-
tential at the position of the missing adion (point a)
as Y. This potential, which applies at the distance 8
in front of the surface, arises solely from all surrounding
regularly arranged adions and their images. Thus,
(Yo—¥a) is the potential difference associated with

4 J. R. Macdonald and C. A. Barlow, Jr., J. Chem. Phys. 36,
3026 (1962).
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removing an adion from its equilibrium position in a
complete lattice to “infinity,” omitting redistribution,
chemical effects, and contributions arising from the
ion’s own images. Within these approximations,
AW ;= z,e(Y—¥a) and f becomes?+5

fl; 1- [‘I’a/‘,’w} (1)

As we shall see later, the contribution from the re-
moved adion’s own charge image and chemical binding
effects properly do not appear in Eq. (1). Since the in-
duced dipole moment of an adion depends upon N,
however, the effect of the image of this dipole will not
cancel in the later more accurate definitions of f, and
its influence should be included. Let us designate quan-
tities pertinent when «=0 with a superscript zero; then,
P=1—[¢/¢.]. Even this simplified quantity has
not been calculated accurately heretofore except in our
own recent work” because of the usual replacement of
the array of non-ideal dipoles formed by the adion
charges and their images by an ideal dipole array or
other type of approximation.

In order to develop the next definition of f, denote
the potentials at point ¢ (missing-adion site) arising
from the images of the adion charge and its induced
dipole as ¢, and ¢4, respectively. These potentials are
evaluated as though the adion were in its equilibrium
position; thus, the images appear to be a distance of 23
from point ¢. Let ¢p;i=¢nt¢s and Y. =¢.+¢; Then,
one might expect that an expression for AW superior
to that given above would be AW,=z.e Wu—v¥i)x
— W Vi) o )= 2.6 Yoo AY;], since ¥, is zero for N=0.
This expression counts self-image energy terms at their
full value, but since they arise from self-images only
half of each full contribution is appropriate. Thus, let
Vo= (di/2) =+ (¢:/2). A detailed and relatively
complicated consideration of individual ionic work
function energy terms shows that in the absence of re-
distribution, as one might expect, AW ,;=z,e[¥w— A, ];
thus let us define

f2E 1- [A‘pe/‘llw]; (2)

A‘l’e = ¢a+ %[¢d "¢d0]- (3)

Here ¢4 is the value of ¢4 at N=0; the value of ¥,
in this limit is zero; and chemical and image charge
terms have cancelled out of Ay.. Suppose we now define
the following function of r;:

where

T'=~[¢ps—ba0 /2w @
Then, Egs. (1)-(4) yield
Jfe=f1FT, (2a)

showing how the more accurate f, differs from fu.
Note, however, that f®= fi°

In order to obtain the f appropriate when redis-
tribution effects should be included in AW, we shall
generalize to the case a7#0 a treatment of redistri-

R. MACDONALD AND €. A. BARLOW, JR.

bution energy previously published.” Let us consider,
for the moment, unit area of adsorbent surface. Then
N is both the number density of adions and the total
number on this area. The total system energy will then
be” U= (2.,6/2)Zagions ¥s= (2.6/2) Nfs, where ¢; includes
induced polarization effects. When an adion has been re-
moved to “infinity” and redistribution has occurred, N
will become N'=N-+3N, where 8¥=—1, and ¢; will
change to ¢/ =y,+8/,. The new system energy (includ-
ing that of the adion at “infinity”) will be U'=z,ef,
4 (2,¢/2)N"¢/, where the potential ¢/ is calculated
neglecting the small contribution from the jon at
“infinity”” and this neglect is compensated exactly by
omitting a factor §, which otherwise would multiply the

* first term in U’ involving ¢,. From the definitions,"

Wi=8U=U"'—U, and we may write

Wi= (30){¥ut3[ (N4 N) (it &) — Ny 1}
£ (306) {Yoot (SN/2) Y+ N (8¢:/8N ]}
(z0) (Yo 3[Yit N (d:/dN) ]}, ®)

where we have neglected a term of order N~ replaced
a difference quotient by a derivative, and set ¥ =—1
in the last expression. Since ¥, approaches zero as
N—0,

AW i= (o) b AN @/, ©)

an expression applying whether V denotes unit or total
area. Using Eq. (6) and previous definitions, we find

fe=t04 fot T (V) @dds/dN)],  (7)

which is unequal to f;, as we shall see later, even when
a=0,

CALCULATION OF f;°

To establish connections with earlier work, we
first consider f1°, no polarizability, no redistribution.
Then’7,10,l3

\0000: 4N Z,e0= (87!'/ ‘/3) (z,,e/ 6) R1—2, (8)

where Ry=r1/8 and the last equation applies for a regu-
lar hexagonal array. We may also write

R1= 3_§R1m, (9)

where Rin=71,/8 is the minimum value of R;, that
which applies when 8= 1. The quantity 71, will be of the
order of the hard-core diameter of an adion. It may be
appreciably larger than this diameter if 2 model such
as the “immobile” system of Gadzuk and Carabateas®
is considered for which #=1 need not correspond to a
hexagonally close packed array.

Before considering f,° over the entire range of Ry, let
us first investigate its limiting behavior for a mobile,
hexagonal array in the limit R;—o, - 0. The
ideal dipole approximation is then appropriate and’
Va'=Wuip=22.,606°/r:®. The quantity ¢=211.034 arises
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from a lattice sum.!013.15.16 Using the above Yqip, and
P, we find

f01= 1— (\/30-/41rR1)%’1 —_ 15209R1_1 (Rl —®© ), (10)

a result which involves ¢ through Eq. (9). A calculation
of this type was carried out by Kennedy®; unfortun-
ately, he omitted a factor of B and obtained
f1=1-0.4516%, which can only agree with Eq. (10)
for the single specific value of Rin, R1,=23.37.

Since Gadzuk and Carabateas’ “immobile’’ model is
essentially equivalent to the present mobile model
with @=0 and since they calculated f on the basis of
the present fi°, we would expect their result for this
case, which holds only for the ideal dipole approxima-
tion, to agree with that of Eq. (10) when transformed
from a square to hexagonal lattice. Changing a lattice
sum which these authors took as 9 to its more accurate
value'® of 9.0336 and multiplying their expression for
(1—f* by ($)~* (11.034/9.0336) to pass from a square
to hexagonal lattice, we do in fact find Eq. (10).

In the opposite limit Ry — 0, we expect fi° to be of
the form f,® — aR;. The quantity ¢ may be evaluated
exactly from our previous work” and is found to be

o= (4r/V3)[(In2—v)+In(xN3)]  (11)
=~().20812.

Here v, is the Euler constant.

An approximate expression for f,° over the entire
range of R, may be obtained using the cutoff model first
introduced by Grahame.'” Here,1%18 the discrete adion
and image charges are smeared and replaced by uniform
sheets of charge (having the same charge density as the
discrete distribution) with colinear circular vacancies
each having a radius of 7= (rN)~#=2r,/1.9046. Let us
write the connection between 7, and 7; more generally
as ro=pr1. In a treatment carried out since the first
version of the present work was completed,'® we have
compared the predictions of the cutoff model using a
variable p with accurate values of ¥,°. Such comparison
leads to the result that the cutoff model can be used to
calculate essentially exact potentials and fields for the
fixed hexagonal array situation provided p varies over
a narrow range from the Grahame value, p,==0.52504,
when z/r;—® to the ideal dipole value, po=4r/V3s
£20.657522=1/1.5209, or less, when z/r1— 0. In the
present work, as in our recent treatment of work func-
tion change on adsorption of polarizable ions,® we
shall, for simplicity, use the constant ideal dipole value
of p, po=47/V3o, since it yields more accurate results
in the cutoff approximation formulas than does
Grahame’s value over the range of variation of z/r1
with which we are concerned.'®

15 J. Topping, Proc. Roy. Soc. (London) A114, 67 (1927).

1B, M. E. van der Hoff and G. C. Benson, Can. J. Phys. 31,
1087 (1953).

17D, C. Grahame, Z. Elektrochem. 62, 264 (1958).

18 T, R. Macdonald and C. A. Barlow, Jr., Surface Sci. (to be
published).

FOR AN ADSORBED LAYER 3475
On evaluating fi° for the cutoff model using its
formula’ for ¢,° with p=p,, we find

f19=14 (2nR,/\30)—[ @2rR, By +1Th,  (12)

which reduces properly to Eq. (10) as Ry—. For
R, —0, Eq. (12) yields fi* — (2r/V30)R1==0.32876R;,
slightly larger than the accurate value in Eq. (11). In
the range 0.1< R; < «, the maximum deviation between
the prediction of Eq. (12) and the results of the accurate
non-ideal dipole treatment is less than 3.5, of (1— f1°).
Warner? and Warner and Hansen? have used a cutoff
model to obtain an expression for fi° equivalent to Eq.
(12). Unfortunately, they implicitly chose the quantity
ro/B=pR,, which appears in the cutoff approximation,
as 2/4/0(=2Ri/Rin=2r1/r1m). This is similar to
Kennedy’s® choice and eliminates all R, dependence
from f%. It is equivalent to the specific selection of
Rim as 2/p and yields Ry,,223.04 and 3.81 for p=po and
p=pw, respectively. Neither value can be true in gen-
eral since Ry, should not depend on p and may depend
on the size, shape, and position of the charge centroid of
adsorbed ions and on the character of the adsorbent
surface.

For future calculations of f which include thermal
effects, it is valuable to have a relatively simple formula
which yields accurate fi® values’. The formula from
which these reference values were calculated” is con-
siderably too complicated to be useful for this purpose.
Equation (12) will itself be sufficiently accurate for
many applications. A more accurate interpolation
formula can be obtained, however, by writing

"= fi+F, (13)

where f1 is given by Eq. (12) and F1 is a rational func-
tion fitting of the difference between fi° and f,° (see
Appendix). The largest difference found between values
of f1° predicted by Eq. (13) and the exact values was
1.05X10~* in the range of 0.01<R;<100. Such ac-
curacy is more than sufficient for all practical purposes.
Note that an accurate fit for Ri<2 is not very im-
portant; the minimum value Rj,=2 corresponds to
close-packed, spherical adions with central charges, and
either the shape or charge centroid location would have
to be very different for Ry to be much less than 2;
alternatively, an appreciable contribution to 8 from the
metal itself could cause Ry, <2.

As mentioned previously, the present result for
f1® can be converted to that appropriate for a localized
model by taking 6=1 in ¥, and then multiplying
(1— ) =¢2/¥.0 by 6. The resulting f1° is independent
of @ and equal to the mobile-model f,® value at §=1.

CALCULATION OF f, AND f;

Although ¢, is a smeared or average potential, its
value depends on discreteness-of-charge effects when
a7#0. As we have shown elsewhere,®® the field §; which
polarizes a given adion depends on the images of this
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adion and on all surrounding adions and their images.
A discrete particle treatment of the situation leads to'®

\waleOEI _g(Rl)]) (14)
where
g(Ry)=— (a8:/2.,¢8)
v '\/g Rl—z
g(i){ (Br/5) +3-sl, @3
2e;/ ([0.91174 (27R,/V30)2 ]t
e=1+J{(87%/3%)[14+ (27 R, /V30)? T+
—i+oRi}, (16)
S=2(8/26) (88x), arn
and
J=a/B. (18)

In the above, the cutoff model has been used where
appropriate, € is an effective dielectric constant, and
&n1 is a “natural” polarizing field present at the
surface of the adsorbent in the absence of any adsorp-
tion!® whose effect enters via the dimensionless param-
eter S, defined in Eq. (17). The term in Eq. (15) in-
volving the number } arises from the field of the image
of a given adion’s charge, and the preceding term derives
from the field at the adion coming from all surrounding
non-ideal dipoles formed by other adions and their
charge images. The correction term, g(Ry), is zero for
zero polarizability and the quantity J introduces the
“feedback” upon a polarizable adion (accompanying
its polarization) by the electric field arising from the
image of its polarization. The JoR;® term in ¢ accounts
for the polarizing field at a given adion arising from all
surrounding coplanar (z=3) dipoles. The term J/4
arises from the field of the dipole image of the selected
adion, and the final term comes from the ideal-dipole
cutoff approximation for the field at the given adion
produced by all other array image dipoles (in the plane
z=—f). Although Eq. (14) has been derived for a
hexagonal array, a square array of the same-NV should
lead to essentially equal values of ¥,, over the range of
interest of Ri.

In order to calculate f; we must next obtain y,. When
a0, only the induced dipole image array (less the
ideal dipole at the central image position) produces a
potential, ¥,,, which must be added to ¢ to obtain ¥,.
A sufficiently accurate approximate formula for this
potential can be obtained by again using the cutoff
model to represent the induced dipole image array. We
require ¥,, at a distance 28 in front of the center of the
array with it approximated as a smeared dipole sheet
having a removed circular hole of radius 7o=4x7,/V30.
A self-consistent treatment along the lines of the calcu-
lation® of ¢, leads to

ap=—(Y'/ 2)[1+ (2nR1/V30)* T %g(Ry).  (19)
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Fic. 1. The conventional penetration parameter f; vs 6 for
Rin=4 and various values of the normalized quantities
S=2(B/2.,6) (8 &n1) and J=a/p® values. The dimensionless param-
eter Rim=r1n/B is the ratio of the minimum (#=1) adion nearest-
neighbor distance 7, to the distance 8 between the charge centroid
of an adion and the imaging plane.

Since
Vo=v¥a"+Vap, (20)
(=)~ {1+ QeRyNBeY g (R)/2)
o 1—g(Ry)
=f1°—g(R1){1—[1+ (21rR1/\/3_cr)2:|‘*/2}. o1)
1—g(Ry)

This expression reduces to f° as it should when « — 0.
The image dipole potential ¢4 is just a8i/48°
= —2,6¢(R1)/48. Thus, we may rewrite Eq. (4) as

T=(V3/64m) R g(Ry)—g () ]/[1—g(R1)],

where

(22)

g(=)=27(1—5)/(4-J). (23)
On using Egs. (21) and (22) in (2a), we obtain an expres-
sion for fo.

Figures 1 and 2 show calculated values of f; and f.
vs Ry and @ for a number of J and .S values. The 6 scales
are linear and are appropriate only for the specific
choice R;,,=4, which seems to be a reasonable value for
amaterial such as Cs* on tungsten.’®:1: The dependence
of fiand f; on the upper, nonlinear R, scale is independ-
ent of the choice of Ry,,.

Figure 1 shows that increasing J rapidly reduces f;
for appreciable 8. On the other hand, J=21 is about as

15 J. B. Taylor and I. Langmuir, Phys. Rev. 44, 423 (1933).
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large a value as one would expect to find for Cs* on
tungsten,’® and when S=0 the reduction in f; is rela-
tively small. Positive values of S reduce the effect
further. The value $=0.25 used in Fig. 1 corresponds
to 8,1~8X10” V/em for z,=1 and B=1.5 A. This
large a value of &, at a distance 1.5 A in front of the
adsorbent plane is rather unlikely; although electron
overlap at the surface would be expected to lead to a
positive 8,1, it would probably be smaller than the
above. It should be noted, however, that Young? has
found a desorption field strength for thorium on
tungsten of 2.6X10® V/cm. For comparison, the
attractive field on a point charge with z,=1 arising from
its image a distance 28=23 A away is 1.6X10% V/cm.

Figure 1 is really included only for comparison with
earlier theoretical work ; as we have seen, f, is a better
quantity for comparison with experiment than fi.
Figure 2, which has a different ordinate scale from
Fig. 1, shows that positive .S increases f; and negative
S decreases it. The roles of J and S are not interchange-
able, however. Here we see that for sufficiently small
values of 6, increasing J increases f, over fo"= f1° while
the reverse effect happens at large enough 6’s. For
J~1, the effect of a0 is appreciable, and it is made
even greater by positive values of S. Thus, adion polari-
zability should not be neglected even when redistribu-
tion can be. We have not shown negative values of f1
and fs. Such values and their significance are considered
later on.

0 .02 04 06 08 1.0

F1G. 2. The penetration parameter f; (with images considered
but no redistribution) vs 6 for Rix=4 and various S and J
values.

2 R. D. Young, J. Appl. Phys. 36, 2656 (1965).
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Fic. 3. The penetration parameter including images and redistri-
bution, fs, vs 8 for Rin=4 and various S and J values.

CALCULATION OF f;

Equation (7) shows that to obtain f; we need to cal-
culate NdAy,/dN. We may write

A‘pi=‘/’a0+¢ap+¢d_¢d0- (24)
In the earlier work,” we defined and calculated
n= (V) (34.0/ )
(N (da/dN). (25)

The numerical results for n obtained there have been
fitted by a rational function approximation (see Ap-
pendix); thus, this quantity is directly available for
use in the calculation of f;. :

Let §=—(N/¥o)(dA¢:/dN)= (R1/ 2} (dAY:/dRy).
Then, we may write for {:

=2~ (e /Ye)+ (Re/ 2¥)[d Wapta)/dR:]
21—g(R) T (fL*— 1)+ (Ry/2¢") [ dar/dRy]

— (V3Ry*/64m)[dg(Ry)/dR, 1}.  (26)

The derivatives in Eq. (26) may be calculated from the
expressions already given. The substitution of the result
for ¢ in Eq. (7) allows f; to be evaluated. Such calcu-
lations have been made using a digital computer and
some results are shown in Fig. 3. Because of the length
of the final expression for f;, we have not included it
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F16. 4. The quantities f; and f; vs 8 for Rin=2, S=0, and
various J values.

herein; the expression for f is relatively simple,
however, and is :

fE=3LA+n i+ A—n)] @7

The quantity 5 varies from unity at R;=0 to 3 at
Ry~»re0.

For direct comparison, Fig. 3 shows fi® as well as
f& and thus indicates how much redistribution reduces
f even when a=0. For appreciable J, comparison of
Figs. 2 and 3 shows that redistribution has a very
pronounced lowering effect on f.

In order to show the widest range of Ry at all likely,
we have included Fig. 4, calculated for Ry,=2. Both
Jf2 and f; are plotted and only the first quarter of the ¢
range corresponds to that of the earlier figures. When-
ever /21, we see that f; is appreciably smaller alge-
braically than f for identical J values.
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Figures 3 and 4 both include negative f regions, with
" the negative regions being particularly pronounced for
the smaller R; values of Fig. 4. Since previous work®
has shown that 2z, remains positive for 7<1.85 and
S§'=0, the negative f values of Figs. 3 and 4 all imply
negative AW ; values. For J > 1.85, 2, shows a negative
region and f will have one or more poles; since a J
value as large as this apparently is unlikely for most
situations of interest, we consider here only the range
0<7<L1.85. »

A negative value of AW, implies that it requires
more energy to remove an isolated adion than one in an
array. Evidently, the larger the value of J, the less
dense the array need be for AW;<0. The larger the
J value, the larger the dipole induced in a given adion.
These dipoles produce potential contributions which
reduce both |¢,] and [¢,] but by different amounts.
Thus, negative values of fi, for example, can occur
because for given J |¢.,| decreases more rapidly with
decreasing R; and increasing array density than does
|¥a|. This effect is the reason for possible negative
values of both f; and f; and implies the surprising result
that with a0 |¢.| can exceed |¢,|. This possibility
is illustrated later. For f;, negative values again arise
from the above cause but redistribution energy contri-
butions are also important. There is no redistribution
for an isolated adion and redistribution of an array
during removal of an adion makes it easier to remove
that adion.

The quantity (fe—fs) is itself the redistribution
energy normalized by z,e.. It is zero at §=0 and was
always positive in our calculations. For =0, a slight
maximum occurs near R;=2.46. There is none in the
range 2<R;<x for S=0 and 0.25<7<1.25 but a
maximum reoccurs near Ry=2.23 for J=1.5 and has
risen to Ry>~2.64 by J=1.8. The larger the value of
J (£1.85) the larger the magnitude of (f2—f3).

Warner and Hansen,? in a company report (AI-64-20),
seem to have given the only other treatment of redis-
tribution related to the penetration parameter. The
results of their treatment are not really comparable
with the present ones because these authors assume no
lattice structure and consider only a disordered as-
semblage of adions. As we have mentioned, our present
treatment is inapplicable at low coverages where an
ordered array is a poor approximation; Warner and
Hansen’s results are ouly pertinent within this range
although they actually cover the range 0<6<1. Their
results are still approximate even for small § for the
following reasons: First, a Bragg-Williams approxima-
tion is used in which the motions of the particles are
considered independent of one another but within a
potential provided by the particles themselves. Their
resulting distance of nearest approach, R, is (3/7%)%;
20,743y, for a hexagonal array, or for a square array
(2/m)4r1,~0.79871,, where 71, is the nearest-neighbor
distance for the square array. This choice of R, which
may be identified with 7, is also probably not a good
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one: Grahame’s original cutoff choice 7>20.5257, also
relates to a disordered array, and Levine ef al.** have
presented qualitative arguments that the numerical
factor p should actually be less than 0.525 for a ther-
mally disordered assemblage of adions. Further, one can
readily show? that for the situation of a random array
with no interaction between particles, the average near-
est-neighbor distance is (3/64)1~0.465r;. For a fixed
hexagonal array, on the other hand, the numerical
factor actually varies'® from Grahame’s value at r; — 0
to 4w /v300.658 for r,— . Finally, as we approach
the high-temperature limit, assuming some adions still
present, a regular array will have completely disap-
peared and the adions will move independently of one
another except for steric effects which will limit their
closest distance of approach in the plane to approxi-
mately twice their hard-core radii. In this limit, then,
the cutoff model should be exact provided 7o is taken as
71m, 2 fixed value. Then p=ro/r1=71n/r1=Rin/R1=+6.
Although this p value could approach unity for
Ry~ Ry, the array would not then be disordered. The
quantity Ry will actually always be appreciably larger
than R;., at temperatures sufficiently high to produce
considerable disorder for a given R, and # for a quasi-
random lattice may thus be expected to be even smaller
than the 0.465 value above. Note that when p=Ri./Ry,
Rip= Ry and on replacing 2rR;/V3o=poR; by Rin in
Eq. (12), we find f10= 1+ (Rim/2) —[ (Rin/2)*+ 1] for
the high-temperature limit of this quantity. When
Rin=2, f1d=2—V2:20.586, a result already mentioned
by Warner and Hansen. From the above considerations,
it appears that any choice much greater than 0.5 for a
well-disordered array must be considered suspect. Cer-
tainly, 0.658 must be the upper limiting value under
any condition.

In addition, Warner and Hansen have approximated
the adions and their images as ideal dipoles and ap-
parently neglected the imaging of the ideal dipoles in-
duced in the adions. On identifying their hard-core
radius #* with 8, we find that their assumptions for
cesium on tungsten (N,=3.56X10* cm™?) lead to
B=24.23 A, probably much too large. When the above
value of N, is substituted in ri,=($)}N, ™}, one finds
7122570 A. These values lead to Ry,=1.35, a most
unlikely value. It is, however, consistent with their
choice of a minimum (f=1) distance of nearest ap-
proach, Ruip=r*=g. This small a nearest approach
distance is, however, inconsistent with the assumption
of spherical adions having their charge centroids at
their centers.

Warner and Hansen have given a curve of f(6)
including redistribution and polarizability effects (with
the value of a used not stated) which except at 6~0

(121 %.)Levine, J. Mingins, and G. M. Bell, Can. J. Chem. 43, 2834
965).

2 C. A. Barlow, Jr., and J. R. Macdonald, Advances in Electro-
chemistry and Elecirochemical Engineering, edited by P. Delahay,
(to be published).
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lies appreciably above an approximate, non-ideal dipole,
nonzero polarizability, cutoff curve calculated without
account of redistribution. This latter curve involves the
different (implicit) Warner-Hansen assumption ro/8
=pRo=2/(0)! mentioned earlier. This unjustified con-
nection is inconsistent, as well, with their redistribution
assumption since it implies 7o =28, not 8. If p is calcu-
lated from the above equation using the redistribution
treatment Ry, value, one obtains the far too large value
$=22/1.35221.48. Note that if Warner and Hansen had,
more reasonably, defined their quantity »* as the hard-
core diameter, rather than radius, then r*=28. It
follows that =~2.12 A and R,,=22.7. Their two choices
of 7om would then be consistent but would still imply
the unlikely value p=22/2.7220.743. [Note added in
proof: Warner (private communication) states that the
identification of #* as the hard-core radius was simply
an error; #* should have been defined as 2 the hard-
core diameter. ]

Warner and Hansen ascribe the main difference be-
tween their two curves to the difference between the
ideal and non-ideal dipole approximations, not to the
presence of redistribution and polarizability in one
calculation and their absence in another. On the basis
of their work and the choices and approximations made
in both calculations, this conclusion is clearly unwar-
ranted. For our different situation treated without the
above approximations, we find, in fact, that fs lies
appreciably above f3, not vice versa, over the whole 6
range for any reasonable J value, including 0. For small
¢ at the limit of the applicability of the regular array
model, one would expect the results of a random model
which includes redistribution to join the present one
without the crossover implied by Warner and Hansen’s
results. It appears likely that the Grahame cutoff model
with redistribution will lead, when applied properly
near 6~0, to results in agreement with these
expectations.

A comparison between calculated and experimental f
values is made uncertain by several factors. First,
different methods of deriving f from experimental results
usually give somewhat different curves.>#—¢ The dotted
and dash-dot curves of Fig. 5, for example, were both
calculated using the same cesium-on-tungsten Taylor-
Langmuir® measurements but differ in detail. Both
curves have been replotted from published work by
first photographically enlarging a published graph, then
accurately scaling off points with a Gerber variable °
scale. The dotted curve is taken from the work of
Gadzuk and Carabateas® and the dash-dot curve from
that of Rasor and Warner. Note that there is some
uncertainty in the determination of the @ scales of
these curves.

In comparing theory and experiment, we require
values of 8, N, (giving 71m), @, %, and &,1. We must
also decide whether redistribution is important or not.
Although it is likely that adsorbed elements are Cst ions
for small 4, it is probable that some adatoms are present
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F1c. 5. Comparison of experimentally derived curves for cestum
on tungsten with theoretical results for Ri,=4, z,=1, $=0, and
J=0and 1.

for larger 6 values.’3 Even if they are not present, z,
itself may possibly fall'® with increasing 6, invalidating
our assumption of a #-independent chemical term in the
total adsorption energy. Finally, no effects of a possible
microscopically nonplanar imaging surface!® have been
included in the present theoretical treatment.

The appropriate value of 8 for Cst on W is probably
close to the ionic radius of Cs, =1.67 A. The appropriate
value of N, is more uncertain. Taylor and Langmuir®®
have not fully specified their W surface. They suggest
there should be one adion or adatom for each four surface
tungsten atoms. Although they mention the (110)
surface, for which &V, would then be 3.56X10" cm™2,
they actually use V,=4.8X10" cm—2 to account for a
rough surface. In fitting the Taylor-Langmuir work
function data, Gyftopoulos and Levine® have used
N,=4.89X10"* cm? On the other hand, Warner and
Hansen? and Rasor and Warner® have used 3.56X 10
cm? in their curve fitting. Finally, Gadzuk, and Cara-
bateas*® have employed assumptions equivalent to the
choice N,222.50X10* cm™%, appropriate for a (100)
surface. Recent work by Blott, Hopkins, and Lee*
suggests that, in fact, a (100) surface does develop on a
well-annealed tungsten foil. If we therefore take
N,=2.50X 10" cm~2 as the best value, then 7,,,226.80 A,
and Ry,=4 if 8=1.70 A. Since this is very close to
the likely ionic radius, we shall employ R;,=4 in our
curve fitting.

Possible values of « for Cs* range? from about 2.3
to 3.34 A3, With 8=1.70 &, the maximum J is about
0.68. The quantity 8 would only have to be reduced to
about 1.5 A to yield J=1, however, if a223.34 A3,

( 2"‘E) P. Gyftopoulos and J. D. Levine, J. Appl. Phys. 33, 67
1962).

2 ]; H. Blott, B. J. Hopkins, and T. J. Lee, Surface Sci. 3, 491
(1965).

% J. Pirenne and E. Kartheuser, Physica 30, 2005 (1964); E.
Kartheuser and J. Deltour, Phys. Letters 19, 548 (1965).
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Figure 5 shows some theoretical f, and f; curves for
comparison with the somewhat uncertain experimental
curves shown. The values Ry,=4, 2,=1,5=0, and J=0
and 1 were used in calculating the f» and f; curves.
We cannot expect our results to agree well with experi-
ment for 0.1 because of the present neglect of
thermal vibration, which becomes more significant the
smaller 6. Further, because of the possible presence of
adatoms and z, dependence on 6, the adion curves
probably do not apply well above 6~0.7 or 0.8.
Although the f; curve for J=0 is closest to the experi-
mental curves in the middle range of 6, it should be
remembered that a positive value of 8.1 (0<.5<0.25)
will increase f; values appreciably in this range (see
Fig. 3), bringing them closer to the experimental curves
even with J~1. Although a negative value of §,; will
reduce the f, values, making the /=1 curve closer to
the experimental curves, a negative value is less likely
than a positive one. With redistribution included, there
appear to be one or more combinations of J (for
0<J<1)and.S (0<.5<0.25) which will yield quite close
agreement between f; and the experimental curves in
the middle range where the theory should apply. In
view of the several uncertainties in both experimental
and theoretical curves, attempts to obtain closer fitting
than shown in Fig. 5 seem unwarranted.

POTENTIAL-DISTANCE DEPENDENCE

Let ¢/(Z) be the potential along the line perpendicular
to the adsorbent through point a. Its zero is taken at
the electrode, and it is defined in the absence of the
central adion and its images. The quantity Z is defined
as z/B. Then ¢y (1)=y, and ¢ (= )=y,, where the in-
finities here are to be understood as the ‘‘infinity”
defined earlier. A number of curves of ¢ (Z) for a=0 have
been presented in earlier work.” As expected, they show
a monatomic increase from zero to y..°. Since the results
of the last sections imply that |¢,| can actually exceed
|¥| when a0, it becomes of interest to investigate
the detailed shape of ¥(Z) for this case. Further, this
shape is of importance for electron work function meas-
urements and calculations, since for potential shapes
typical of the systems we consider, a significant fraction
of the total electron current may arise from electrons
which have quantum-mechanically tunnelled through a
thin potential barrier region near the electrode.

We may initially divide ¢(Z) into two parts:

Y(2)=Y(2)+ap(2).

Although ¥°(Z) has been calculated accurately in the
earlier work, we can represent it sufficiently well by the
cutoff approximation to it7 plus a rational function
correction. We may thus write

V(2)=y.'[§ (B*—B)+F:],
BE=[ (4rRy/V30)*+ (Z£1)7]3,

(28)

(29)
where

(30)
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and F, is the rational function correction (see Ap-
pendix); it is a function of both R, and Z.

The polarization contribution to ¥(Z) may also be
divided into two parts:

Vap(Z)=Vap1 (Z)+¥up(2), €3))

where ¥4,1(Z) is the potential at Z arising from the
layer of discrete, induced dipoles in the Z=1 plane and
Vap2(Z) arises from their images in the Z=—1 plane.
Note that ¢e,(1) =¥ ape(1)=¢ap, since Yap(1)=0. For
the ¢,,(Z) correction, the cutoff model approximation
for each layer will be sufficiently accurate, and we find

‘pap(Z) = (‘/’mo/z)g (Rl)
XLEZ+H@BY+EZ-1)B)'] (32

When the above results are combined, we may readily
calculate ¥ (Z)/¥.. Note that in the limit Z — o, this
ratio properly goes to unity since F; goes to zero in the
limit. For the present calculations, we require the high
accuracy for y*(Z) given by the expression in Eq. (29)
together with that in the Appendix for F,. This is be-
cause when [1—g(Ry)] is small, as it is for large J,
W (2)+¥ap(Z2) /¥ must approach [1—g(Ry)] for
appreciable Z/R;, and we then must calculate the small
difference between two relatively large numbers.

Although the present form for ¢°(Z) yields a very
close approximation to accurate values of this quantity,
there may be occasions where some accuracy can be
sacrificed to gain simplicity. Rather than just using Eq.
(29) with F;=0, we have found by nonlinear least-
squares fitting that added accuracy can be obtained by
doing this with modified B+ functions. In Eq. (3) let
us replace 4w/V30220.65752 by p. In the range
0<Z/R:<2, least-square values of p found were 0.604,
0.620, and 0.607 for Ry=2, 5, and 10, respectively. Use
of these values instead of 4w/V3e reduced the standard
error of the fit by about a factor of two or greater in
these three cases. The largest resulting standard error,
found for R;=35, was about 0.0104. In the calculations
reported below, we used the unmodified Eqgs. (29) and
(30).

Figure 6 shows calculated results for ¥(Z)/¥. vs
Z /R, for two R; values and a number of J values. The
variable Z/R; is employed instead of Z because we
found” in the =0 case that its use greatly reduced the
dependence of curve shape on R;.

Figure 6 indicates, as expected, that large J values
can lead to ¥ (Z) >y, over appreciable parts of the Z/R;
range. In keeping with the results in earlier figures, an
appreciably larger J value is required to reach a given
value of ¥(Z) (>v¥,) for Ry of 5 than for R;=2. Al-
though these curves show increasingly high peaks, the
normalized quantity y(Z)/¢.° decreases as J increases.
Thus, for example, for z,=1, =24, and R;=2,
$'2226.12 V and ¢(1)=¢,~6.1, 4.8, and 4.3 V for
J=1, 1.5, and 1.75, respectively. Similar behavior is
found for Ry=5, but here ¥..2=24.179 V and ¥(4)~0.6,
0.4, and 0.24 V for J=1.75, 1.90, and 1.93, respectively.
Thus, the larger R, the larger the value of J needed for
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FiG. 6. Normalized potential vs normalized distance from the elec-
trode for various J values, S=0, and (a) R1=2, (b) R1=35.

a potential barrier (or well) to appear and the broader
and the smaller will the barrier be.

The table in Fig. 6(a) shows that for Ry=2 and
J=1.75, ¥,220.064,.0=21.55 V using the value of y.°
given above for R;=2. In earlier work,” we took approxi-
mate account of the effect of polarizability on ¥.,° by
dividing it by an effective dielectric constant to obtain
V. Even with such a dielectric constant a function of
R;, the present results show that its introduction is a
poor approximation. For example, the e¢; which enters
g(Ry) is about 3.4 for Ry=2 and J=1.75, but the above
reduction of Y. to ¥, is by a ratio of almost 17. Further,
the present subtractive type of reduction of ¥..* to ¥,
can lead to zero or negative values of ¥, unlikely effects
to arise from division by a dielectric constant alone.
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Brandon?® has given an empirical power-law relation
between the polarizability of an ion core and the
“univalent” radius of an ion. It indicates that the larger
the radius, the larger the polarizability. As a first ap-
proximation,-if we use this relation in J, we find that J
also increases with ion radius. On picking a large-radius
ion such as Br—, we find J~0.9. This is not as large as
the 1.75 needed to lead to the large effects of Fig. 5,
but one might expect some ions to fail to satisfy the
above relation and perhaps lead to J>1. The present
treatment holds, of course, for any constant value of 2,;
when S=0, in fact, all normalized curves are independ-
ent of z,.

The exact manner in which the thermionic or high-
field electronic emission properties would be affected
by the potential energy barriers (or wells, for z,>0) we
have described is uncertain in view of the varying
importance of tunnelling with changes in potential
shape. Quantitatively, however, we may speculate that
several effects would occur: In the case of a barrier’s
being several volts in magnitude and 5-10 A thick, it is
unlikely that tunnelling near the vacuum level would
play much of a role; therefore, the activation energy for
emission would exceed the actual work function by a
volt or so. Furthermore, the presence of a large “built-in”
field beyond the barrier peak might possibly accelerate
electrons sufficiently that space charge limiting in
thermionic emission would not take place. This might
be of practical importance in thermionic energy con-
version systems. In the case of a deep potential well,
tunnelling into the well could be a very likely process,
and the sign of the field beyond the well minimum would
encourage formation of a space-charge region here. It is
possible that this region of trapped charge could provide
a ‘“‘virtual cathode’ having favorable electron emission
properties. More definite information concerning these
effects can only be provided by an analysis of the quan-
tum-mechanical problem of the emission process.

APPENDIX: RATIONAL FUNCTION
APPROXIMATIONS

A. General Form
F(x)=3 aw'/ 3 bxi,
1=l 1=1

with b,=1. The ¢; and b; parameters of F(x) are ob-
tained by an equi-ripple Chebyshev fitting which mini-

26 D. G. Brandon, Surface Sci. 3, 1 (1965).
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mizes the absolute value of the relative difference be-
tween F(x) and the function fitted for a given number
of points M>> (n-+m).

B. Improvement of f.°

The function F; in Eq. (13) is given by xF (x) with
x=Ry, n=1, m=3, and the values of ¢; and b; given
in Table I. All numerical values are given in this ap-
pendix to eight significant figures for computer use.

TasLE I. Rational function parameters.

Fi/Ry X
i a; b; a5 b;
0 —0.13373247 3.2943108 0.041685296  0.55822528
1 6.7637060X10~%  2.6135061  0.046452023 —0.52515726
2 e —0.65167653 0.13391316 1
3 1 0.025923739

C. Fitting of 9

Instead of the function 7 defined in Eq. (25) we actu-
ally fit X= (y—1)/2. Thus F(x) is the rational function
approximation to X with ¥=logR,, n=3, m=2, and the
parameters given in Table I. This fitting was carried
out for Ry values from 1 to 100. It is not applicable for
R, appreciably over 100; since =21.499 for R;=100
and y=1.5 for R;= =, this is not a serious limitation.

D. Fitting of y°(Z)

The function F of Eq. (29) is given by xF(x) with
x=Z/Ry, n=1, m=3, and the values of ¢; and b; given
in Table II for two typical R, values. In this table, &z
is the maximum relative error found between the inter-

TasLE II. Rational function parameters for Fs.

R1=2 Ri1=5
SR =2.8 X107+ ér=8.3 X10~¢
i as bi as b;
0 0.035197870 0.85579108  —2.5625712 X104 0.0558203367
1 5.0788303 X103 0.81188859 0.017885945 0.71840080
2 —1,2026512 .. —1,2040912
3 en 1 e 1

polation formula for y°(Z) and the accurate values of
this quantity computed earlier.” The present fitting
covers the range 0<Z/R;<3.
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