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The system considered consists of a solid or liquid material containing mobile positive and negative
charges between two identical plane electrodes separated by a distance /. The results obtained apply also for a
single working electrode, without specific adsorption, and an indifferent electrode. Uni-univalent, nonrecom-
bining positive and negative charges, usually of equal mobility, are assumed. Frequency and transient re-
sponses are compared in the linear regime for two different boundary conditions. One condition requires com-
plete blocking of positive and negative charges at the electrodes; the other requires complete blocking for
charges of one sign but allows free discharge of those of opposite sign. The working electrode is thus reversible,
or Ohmic, for charges of one sign. The method of solution includes electromigration effects, does not require
electroneutrality anywhere, and leads to results satisfying Poisson’s equation exactly everywhere for all times
and frequencies. These results apply to solids and liquids with either electronic or ionic conduction. They
are relevant to low-conductivity liquids, as in Kerr and liquid-crystal-display cells, to ordinary solid and
liquid electrolytes, and at least to some extent to fused salts. Although the frequency and transient re-
sponses involve continuous distributions of relaxation times, three main relaxation times, rp, M7p, and
M?rp, occur. Here 7p is the dielectric relaxation time of the charge-containing material and M =[/2L),
where Lp is the appropriate Debye length. Results are obtained for any value of 3 but are summarized
here for the usual experimental condition M>>1. At high normalized frequencies, Q=wrp>>1, the system
parallel capacitance associated with mobile charge is proportional to w™/2 for both blocking and discharge
conditions. The series capacitance is proportional to ™'/ for these conditions. It is shown, for the first
time in the completely blocking situation, that this high-frequency response is associated with a Warburg,
or diffusion, impedance. An equivalent circuit is obtained for the discharge case with a maximum of
frequency-independent elements and a minimum frequency dependence of remaining elements. It involves
a dc path and two distinct Warburg impedances, occurring in different frequency ranges. Cole-Cole plots
of the effective complex dielectric constant associated with the “interface” elements of the equivalent
circuit yield, for both boundary conditions, curves very close to that arising from a Davidson-Cole
continuous distribution of relaxation times with distribution parameter 8=0.5. In the limit of large A,
blocking frequency response becomes identical with such Davidson-Cole response. Interface transient
response is found in both cases to involve regions where the current decay is proportional to 72, but that
in the discharge case can occur over a very long time range extending to ~5X107* M?rp. For large M, this
limiting time may be measured in days or months. The long-time limit of the transient charge is finite and
consistent with the low-frequency limiting capacitance of the system. Although the @—0 space-charge
capacitance in the blocking case is independent of /, the corresponding dominant capacitance in the dis-
charge case is extrinsic and directly proportional to /, making potentiostatic measurements inapplicable
at very long times. It is about M /12 times larger than the blocking-case capacitance and arises from charge
diffusion (not space charge) in a finite length, the entire bulk region. Tremendously large capacitances may
thus appear at ultra-low frequencies since M may often be as large as 10%. Some applications and limitations
of the present results to electrolyte situations are discussed, and the important effects of a finite / are em-
phasized. Faradaic and non-Faradaic processes do not separate clearly in the present discharge case, but it
is suggested that when an excess of indifferent electrolyte is present in addition to the discharging ion such
separation may be a good approximation. An approximate equivalent circuit is proposed for this situation
which differs inimportant ways from those heretofore employed by electrochemists.

I. INTRODUCTION

In 1953 an exact, closed-form expression was given
for the admittance of a charge-carrying liquid or solid
between two plane, parallel, completely blocking elec-
trodes.! This one-dimensional treatment applies for
arbitrary ratio of the mobilities of uni-univalent charge
carriers present and for an arbitrary degree of ionization
of a charge carrier of a given sign from a recombination
center. This work was followed shortly thereafter by
Friauf’s? treatment of a similar situation involving
somewhat more general boundary conditions at the
electrodes. Following Chang and Jaffé;? Friauf assumed
that the positive and negative carriers (of equal
equilibrium bulk concentration, ¢) could discharge
at the electrodes to a degree determined by blocking,
or discharge, parameters, 7, and 7,, separately specified

for each sign of carrier. Although Friauf gave closed-
form expressions for the over-all current in his analysis,
he did not derive and investigate expressions for parallel
capacitance and conductance holding for all frequencies.
Instead he gave some formulas pertinent in limited (but
unspecified) frequency ranges and presented a few
calculated curves appropriate for various boundary
conditions such as positive carriers free (r,= ), and
negative ones blocked (7,=0) [termed the (o, 0) case
by Friauf].

Finally, Beaumont and Jacobs* have investigated the
situation of completely dissociated, mobile negative
carriers with adjustable discharge at the electrodes.
Here, unlike the Friauf (e, 0) case mentioned above,
the negative charges arise from complete ionization of
neutral centers taken uniformly distributed throughout
the material. The resulting positive charges are thus
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fixed in position and do not discharge. Friauf’s® and the
author’s! analyses, where positive and negative charges
may both move, are applicable to either liquids (elec-
trolytes and low conductivity dielectrics) or homoge-
neous solids, while the Beaumont—-Jacobs results apply
only to solids. The present treatment and the others
cited above only apply, as usual, for small applied
sinusoidal voltages, appreciably less than k7/e in mag-
nitude. Here % is Boltzmann’s constant, T the absolute
temperature, and e the protonic charge.

Friauf’s analysis yielded «3? frequency dependence
for his parallel space-charge capacitance in the (=, 0)
and (0, «) partial discharge cases. Here (0, «) desig-
nates positive charges blocked, negative ones free. Such
frequency dependence differs significantly from the
usual limiting w2 single-time-constant Debye behavior
found both for completely blocking electrodes'® (any
mobility ratio) and for the Beaumont-Jacobs? situation
of a mobile charge carrier of a single sign with arbitrary
discharge. Friauf? and several later writers*®™® have,
therefore, frequently taken experimental observation
of approximate w32 behavior to indicate the presence
of discharge of one type of carrier and blocking of that
of the opposite sign.

A recent new analysis® for the (0,0), completely
blocked, situation' with equal mobilities has uncovered
the somewhat surprising result that this case too leads
to w32 behavior for the parallel capacitance of exactly
the same magnitude as that given by Friauf in the
(0, ©) or (=,0) cases. This behavior appears for the
(0,0) case, however, only at extremely high relative
frequencies (wrp>>1), beyond the Debye region. Accu-
rate measurements in this region are usually difficult
and even those near wrp=1 may be. Here 7p is the
dielectric relaxation time of the charge-containing
material and is an intrinsic, not extrinsic, property ol
the material considered. It can range from more than
a second for high resistivity solids and liquids to less
than 10~° sec for high conductivity electrolytes. We
shall frequently hereafter use the normalized frequency
variable @=wrp. For @< 1, usual Debye response was
found in the (0, 0) case.

The above agreement in frequency dependence with
the different Friauf discharge case suggested to me that
Friauf’s %2 dependence might also apply only for @>>1.
Since his unnormalized parallel capacitance curves
showed no deviation from «*? behavior, it was impos-
sible to determine the @ range they covered by inspec-
tion, and the applicability of the 2>>1 condition could
not be readily tested.

Clearly, if completely blocking and partial discharge
situations both led to identical w32 behavior only in
the same high-frequency region, actual experimental
observation of such dependence would not allow one to
distinguish between the two cases. The above results
indicated that a more complete comparison between
results for the (0, ) and (=, 0) situations and those
for the (0,0) case would be of value, In addition,
I felt it important to discover for these cases the
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equivalent circuits which represent them in the simplest
way with a maximum of entirely frequency-independent
resistive and capacitative elements and minimum fre-
quency dependence of any remaining elements. Such
minimax circuits yield, I believe, the simplest physical
interpretation of the processes occurring in the material
considered.

The present general area has been treated in the past
independently from their own special viewpoints by
solid state physicists and chemists and by electrochem-
ists. The present work is in part an attempt to join
together the previously rather uncoupled viewpoints
and methods in these fields. It leads to a number of new
conclusions concerning the behavior of solid and liquid
electrolytes and emphasizes the extreme response
changes which can occur when a blocking electrode
becomes even somewhat discharging.

II. PRELIMINARY ANALYSIS

In comparing the blocking and partly discharging
cases, I have for simplicity considered uni-univalent,
nonrecombining charge carriers of equal mobility. In
this equal mobility situation there is, of course, no
difference between the (0, ) and (=, 0) end results.
In the comparison T use the results of the recent (0, 0)
calculations® and, rather than employ Friauf’s own
rather complicated formulas, I have applied the straight-
forward methods of Ref. 1 to obtain a closed-form
admittance for the (0, ) case using the Chang-Jaffé
discharge boundary conditions. In this case, they reduce
to (a) the usual expression for zero positive-carrier
convection current at the electrodes and (b) no pertur-
bation of the negative charge carrier concentration at
the boundaries from its (assumed) initial homogeneous,
equilibrium value, ¢. This quantity is also the equilib-
rium value of the positive charge concentration in the
absence of space charge.

In the present analysis, inner-layer complications and
specific adsorption are ignored; no supporting electrode
is present; and results apply exactly only at the point
of zero static electrode charge. Discussion of these
restrictions and some relaxation of some of them ap-
pears in the final section.

Both blocking and discharge solutions are obtained
by solving,! in the linearized approximation, the usual
idealized transport and Poisson equations exactly every-
where for positive and negative charge. In this sense,
the analysis is a microscopic one. It does not apply
exactly to intrinsic semiconductors or to charged va-
cancies in solids since complete dissociation of charges
is assumed. Insofar as the boundary conditions used are
met in these situations, however, it should nevertheless
apply fairly closely.! The analysis should certainly apply
to ionic motion in solids and liquids and should include
the situation of dielectric materials with very low con-
ductivity arising from the presence of a small concentra-
tion of ionized impurities.

In order to define the response of the system to a
sinusoidal signal, both parallel and series quantities are
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useful and will be distinguished by a subscript “P” or
“S.” Admittances will be generally taken as involving
parallel elements and impedances, series elements. For
convenience I shall, however, use both parallel and
series conductances. The inverse of a series conductance
is, of course, a series resistance. A subscript “‘zero” will
generally denote a Q—0 limiting value, while an
“infinity”’ subscript will denote a value appropriate
when 03>10. Finally, an “N”’ added to a subscript
indicates that the quantity in question has been nor-
malized with the real part of its 23>10 value if it is an
immittance (impedance or admittance), conductance,
or resistance, or its Q—0 value if it is a capacitance.
The same “N” subscript also denotes a normalized
charge or current. Since I shall always be considering
unit area herein, I shall frequently make no distinction
between such quantities as capacitance/unit area and
capacitance, current density and current, etc.

The total admittance/unit area, ¥y, of the material
between plane, parallel electrodes separated a distance /
apart may be written for the (0, o) discharge case as

Yr=Gr+iw(Cy+Cp), (1)

where clearly Gr and (C,+Cp) are electronically in
parallel. Here i=(—1)¥?, and C,, the geometrical
capacitance/unit area, is equal to e/4wl; it arises from
polarization of the underlying material (dielectric con-
stant €) containing the mobile space charge. Thus, C,
will generally be frequency independent over the range
where space charge leads to frequency dependence of
the parallel quantities Gy and Cp. Finally, it is desirable
to define the high-frequency limiting bulk conductance/
unit area, G, and the Debye length, Lp. For the present
equal mobility situation, G,=2eu,co/! and Lp=
[ekT/8me’co |2 Here p, is the mobility of the negative
charge carrier. The dielectric relaxation time, 7p, is
defined as e/4wo,,, where 6, =IG,, is the high-frequency
conductivity of the material. Hence, in the present case
of two parallel electrodes, 7p=C;/G, independent of /.
Note, that the important condition Q=wrp=1 defines
the frequency for which the susceptance/unit area, wC,,
of C, equals the conductance/unit area, G,,. For future
use let M=1/2Lp and r=M ctnh(M).
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Let us now separate Yy into a part involving fre-
quency-independent elements, Y¢, and a frequency-
dependent space—charge remainder, Vp. Analysis shows
that Gr reaches G, in the limit of high frequencics
(2>>1) and goes to (G,/2) as @—0. This G,/2 must
equal paeco/! (as opposed to the equal wyeco/l) in the
limit of zero frequency since only negative charge
carriers can discharge in the (0, ©) case. The only
current passing into an electrode in this limit, the nega-
tive carrier convection current, can be calculated
directly for 2—0 and yields — (u.eco/I) V1, where V, is
the amplitude of the applied sinusoidal potential. It is
defined such that the left electrode (x=0) is positive
fOI‘ V1> 0.

We may now write Ve=Ye+Vp, where Ve=
(pneco/l) +iwC,, and ¥p=Gp+iwCp. Thus, Gp=Gp—
(pneco/l) and is zero at @—0. It is very important to
emphasize that the removal of ¥¢ from V7 is essential
to allow one to define a space-charge ¥p which will lead
to an impedance Zs=VYp~' whose equivalent series
resistance and capacitance are frequency independent
over a maximum frequency range. The determination
of such series elements is, of course, very desirable in
establishing equivalent circuits and in physically inter-
preting measured admittances or impedances.

Although the u.eco/! conductance that is removed to
obtain Gp derives only from the negative carriers and
is frequency independent, the actual negative carrier
convection current magnitude evaluated at the x=0
electrode, 7,,(0) = e[ uncoFr(0)+D,(dn/dx)o], is only
equal to — (uqecy/l) Vi for @—0. Here E(0) is the elec-
tric field amplitude at this electrode, (dni/dx), is the
negative carrier concentration gradient evaluated at
the same electrode, and D, is the negative charge carrier
diffusion coefficient. The current 7,,(0) thus involves
a purely conductive term only in the limit of zero
frequency and includes reactive components otherwise.

Now define the normalized space-charge admittance
Yey=Yp/(G,/2). We shall usually not distinguish
between uneco/l and upeco/l from now on since they are
both equal to G,/2 in the present equal mobility case.
Straightforward analysis of the type employed in Ref. 1
leads for the (0, «) situation to

2(1+42)

Yey=

Further,
GPNEGP/(Geo/2> = RC(YPN>,

Cp/Cy=(20)"  Im(Vpy).

(3)
(4)

Analytic separation of ¥py into real and imaginary
parts leads to clumsy expressions which need not be
given here. Computer calculation of space—charge
capacitance and conductance dependence on @ for a
variety of M values has been carried out and allows

o M0 (1949) 2 ctnh[ M (1-432) 7]+ M (i9) ¥*(14-i2) ctnh[M ()]

(2)

easy comparison with corresponding (0, 0) results. The
quantities Gp and Cp are, of course, electrically in
parallel. Previous work!!"® has shown that equivalent
series quantities tend to be frequency independent over
much wider ranges of normalized frequency than those
applying for Gp and Cp. Define the quality factor Q as
wCp/Gp=[(Cp/C,;)/(Gp/G) Q. Then, the related series
quantities are given by Cs=(14+Q%)Cp and Gs=
(1402 Gp. The appropriate equivalent circuit will then
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be made up of the frequency-independent C, and G,/2
in parallel and both in parallel with a branch containing
the somewhat frequency-dependent elements Cg and
Gs in series.

In the low-frequency limit, Cp+Cy—Co, the total
directly measurable low-frequency capacitance. It will
be convenient to normalize Cp and Cg with their com-
mon Q—0 value, (Co—C,). Let s=(Co—Cy) /Cy, Con=
Cr/(Co—C,) =s7Cp/C,), and Coy=Cs/(Co—Cy) =
sCs/C,). From (2) one finds that

s=sg={(M*/12)+[(r—1) /4], (5

the important ratio of low-frequency capacitance to
high-frequency capacitance in this case. Here the sub-
script “d” refers to the (0, «) discharge case. For the
present situation, Friauf found the less accurate result
sq= (M?/12), adequate when M>>>10. Note that 2M is
the number of Debye lengths contained in the electrode
separation [; thus M is the number which is associated
with a single electrode and half of the material between
electrodes. The quantity M is a crucial, controlling
ratio for the situations here investigated.

The 2—0 limiting expression for Gpy following from
a lengthy calculation is, for the (0, «) case,

Grv—A?=3(0%) {F5[ M (M?—15) ]
+30(M cschM)?— (r+1) JH+3(5M2+1)2,  (6)

showing that Gpy depends on @ as Q? for sufficiently
small Q. In the completely blocking (0, 0) situation,
Gen=Gp/Gy [not Gp/(G,/2) as in the (0, ©) case]
and is given by

Gry— Q=3 (%) [3r(r—1) — M*], (7
as Q—0. For large M, it is clear that the (0, ©)A,4

coefficient of Q2 will be much larger than the (0,0)A,
coefficient.
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F1c. 1. Gpn=Gp/G. vs @=Co/G, for M =100. Here G.=G,
for (0,0) and G,/2 for (0, »).
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F1e. 2. Cp/C, vs normalized frequency ¢ for M =100 and the
(0, 0) and (0, «) situations.

III. INITIAL CALCULATED RESULTS

Calculated curves of Gpy for M =100 are presented
in Fig. 1 and illustrate low-frequency limiting 02 behav-
ior. Although the graph cannot show it, there is a
crossover of the normalized curves near 2=0.05, and
at @=0.1 values of Gpy are about 0.985 and 0.970 for
the (0,0) and (0, =) cases, respectively. Remember,
however, that different normalization is used in the
two cases; thus the unnormalized curves do not cross.

The ©—0 limit of Gs, Gy, is readily calculated for the
(0, ©) case and can differ appreciably from its high-
frequency limit (G,/2). On normalizing Gy, one finds

Goy =453/ Aq. (8)

For M—oo, Goy—(5/7)=0.7143. At M =10, 102, 10,
and 1, Gox is found to be about 0.7155, 0.7261, 0.7941,
and 0.8367, respectively. Goy approaches unity as M—0
and all space charge disappears. Thus, G, itself ap-
proaches (G,./2) as M—0. In the completely blocking
situation on the other hand, one finds!!

GOE (5172/Ab> Gw_)(5/6) Gw

as M—0, and it increases rapidly toward G, for M>1.

I shall return to series behavior later. Meanwhile,
Fig. 2 illustrates the dependence of Cp/C, on Q for the
two different boundary conditions and M =100. Note
that as 9—0, Cp/C, approaches (Co—C,)/C,=s. For
the (0,0) case, s=s,=r—1. Here, the actual M =100
values are 99 for (0,0) and about 838.1 for (0, =).
Figure 2 shows usual Debye behavior for Cp/C, in the
(0, 0) case up to about Q=1; then there is a transition
to the final limiting behavior already mentioned:

Downloaded 11 Aug 2007 to 152.2.62.11. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2030 I

54% 1,62 210

——M={03 s;m836x10*

(0, @) CASE

L1 L1l LN
107! 10 103

MZQ

Frc. 3. GPN and CPN?—CP/(C()— Cg) vs M2 for (0, 00) and M =1
and 10%.

Cp/C—32/v2M when 2>1. This behavior is shown
by the upper dashed curve. Since it does not occur until
Cp<C,/M, such limiting dependence will usually be
very difficult to determine directly for M 2100 or so.
Remember that the total directly measured parallel
capacitance is (C,+Cp). When Cp<0.01C,, for example,
extraordinary accuracy in measuring (C,+Cp) will be
required to allow Cp=(C,+Cp)—C, to be obtained
with much accuracy of its own if Cp is derived from a
parallel-circuit bridge balance. Other alternatives will
be discussed later.

Friauf found the result Cp/C,=0"%2/V2M also in the
(0, o) case. Analysis shows that his actual calculations
of Cp vs w curves employed an M value near 10%, and
he presented an «*? curve for Cp in the frequency
range 50-5000 Hz. Clues in his paper suggest that 300
Hz corresponds to about @=10"% His actual calcula-
tions were carried out, however, for quite unequal
mobilities. Nevertheless, it is clear that his formula and
curve for Cp apply not as @—w (i.e., for 2>1) but in
the region @~10-%, or M?Q~10°%. We can now begin to
sort out the (0, « ) situation. The appropriate curve of
Fig. 2 shows that there is a region where (0, ») Cp/C,
behavior approximates to Q7*2/v2M (upper dashed
line) and a further region beyond Q=1 where the
behavior is @%/2/2v2M (lower dashed line). Thus, for
(> 1 there is a factor of 2 difference in the (0, 0) and
(0, ) Cp/C, limiting curves. Further, for the (0, «)
case in the region (10/M)2<Q <0.1, there is approx-
imately Q32/72M behavior. In recent work,"” I mis-
takenly compared this intermediate Friauf behavior
with the final @3>1 behavior found for the (0,0)
situation. Incidentally this @31 behavior will fre-
quently be difficult to measure accurately because of
such effects as electrode surface roughness, adsorption,
parasitic elements, etc.

The (0, =) case becomes clearer when we plot Gey
and Cpy vs M?Q rather than 2, as in Fig. 3. We can now
compare normalized curve shapes for various M’s
directly. Using this basic frequency variable, equal to
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wl?/4D,, we find that curves of practical interest are
contained between those for M =1 and M =10° shown.
There is little space charge present for M <1 since
(Co—C,) equals only about 0.16C, at M =1. Further,
there is no appreciable change in shape for M > 103
For example, for M2=1, Gpy==0.0369 at M=10?,
0.0368 at 10%, and 0.0367 at M > 10° For M =100, it is
0.0383, and it reaches 0.0522 at M = 10.

If we now define a diffusion region length, i, as
(Dn/w)'?, then (M?Q)V2=(%])/l;. Thus, the variable
(M?Q) V2 measures the number of diffuston lengths con-
tained in half the distance between identical electrodes.
Since M is defined as (I/2)/Lp, a similar sort of ratio,
one finds Q2= Lp/l;. When Q=1, the diffusion length
just equals the Debye length.

The reason for the remaining difference between
M=1 and M =10 curves when M?Q is used as the fre-
quency variable comes from the two different Q=32 fre-
quency ranges frequently present in the (0, ) case.
In Fig. 3, the entire part of the M=1 Cpy curve of
interest lies above Q=1. Thus, only the final high-
frequency limiting Cpy =Q7%2/2v2 M sg behavior appears.
On the other hand, for M =10% the Cpy curve shown
includes only the beginning of the lower-frequency
Q3 /N2Ms, region appearing for (10/M)?<Q<0.1.
Thus the actual M =10? curve shows a slope somewhat
less than —1.5 and lies slightly below the above Cpy
expression. The high-frequency Q7% region does not
appear on the graph for M =10° since M*Q would have
to be > 1012, Thus we see that it is the transition from
the lower-frequency Q%2 region to the upper limiting
one as M decreases toward unity and below that causes
the entire difference between Cpy curves plotted vs
M?2Q. Note that both the M =1 and M =10? Gpy curves
show 2 dependence at M2Q2<1.

(0, ©) CASE
02}
A T B I S R W 1 S R
107! 1.0 10 102 10
M2a

Fic. 4. Gsn=Gs/ (3Gw) and Csy=Cs/(Co—C,) vs M2 for
(0, =) and M =1 and 10°.
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Finally, it is of interest to examine the corresponding
series quantities Csy and Gsy=Gs/(Gx/2). Figure 4 = g 5
shows their dependence on M*Q. Ggy goes from Goy to QS < 3 ] 2
unity, with the main transition near M2Q 210. Further e % -|$ 13
Cgn stays reasonably constant for M*Q <10. Note that g ~ | = :_’
here the M =1 and M =10% curves for Csy can scarcely = + -
be distinguished. At M?Q=10?% the M =1 value is about 2
0.379 while the M = 10° value is about 0.3682. For M = © .
105, the value is scarcely different, namely 0.3685. - T
The dotted straight line is a limiting line given by B gﬂ el 2 = - §
(3/M)(2/Q)''2, appropriate for M >10% and corre- é SFe | B s S
sponds to the first (lower frequency) Q732 region of s = +
Cp/C,. Thus, for M values of usual interest the basic e z
normalized quantities Cgy and Gsy are effectively func- |
tions only of M2 in this frequency region, nof of M 8 vi
and Q separately. 8 = =l =l

IV. EQUATION SUMMARY i S 8

We have seen that in both the (0,0) and (0, =) & S =5, =,
cases three principal frequency response regions can be § & @
distinguished. As 2—0 all quantities approach limiting g = 5
behavior. At some nonzero frequency an initial capacita- o S d d g
tive dispersion region appears, finally followed, when % &
>>1, by limiting high-frequency behavior. Particularly o
in the first two regions, results for the two boundary g
condition situations are quite different. Principal results 8 N

B . . =1 — o
of the present and previous work!® are summarized in g = 5 =
Table I to allow convenient cross comparison of the 2 38 | u g S
three regions for the two cases of interest. All the results § g S < § <
given in this table (except those applying for 2—0) are g §: Y T
approximate, but in the intervals listed the approxima- s . - —
tions are excellent. g &

For simplicity, the expressions in Table I apply only B « s
for M > 3. Results for M <3 are readily derived from the § 3 R €]
expressions already given herein and in Ref. 10. Note - Sal g % % E
that for M>>1, many of the quantities listed simplify E é 829: = ¥ =
considerably. For example, sys—M, s;—M2/12, Ay—>M?, gl E = [
Aa—TM4/180, Aw/ss—M, s2/Av—1, and 4s52/Ag—3/7. 5 %

For completeness, Table II lists approximate values of B =

the quality factor Q= (wCp/Gp)=(wCs/Gs)~.. Note sl = N .
that the corresponding loss tangent, tang, is given by .‘S’ & P P
Q0 '=wCs/Gs. Comparison with Table I shows how Q ei " g §
enters the various approximate relations given there. A o | 2 [ =,
The present Q goes to infinity as w—0 and toward zero ,_-( = % %
as w—oo. Its dependence on € is monotonic for both ! <

boundary condition situations. E E .

I have not listed Cpy and Cgsy expressions in Table I 3 s
since they may be readily obtained from the Cp/C, and s . g o
Cs/C, results by dividing by the appropriate s. The S B S 3
initial values of Cpy and Cgy are unity. The values of LA 5
©Q by which these quantities have decreased to 0.5 are
of interest. For the (0, 0) case, these values are s;/As -
and 27, respectively, for any M. Alternatively, for the - S
(0, ©) situation the values of @ are approximately 8| o W &

AM~2 (M 210°) and 50M~2, respectively. It follows b=t g: g LR
from Table I that for M >10% the @ value at which the 5 S G
(0,0) and (0, ®») Cp's are equal is about Q=Qp= 58%
(2M*)~13. The important variable M?Q is thus about ss
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Fic. 5. Equivalent circuits for (0, 0) boundary conditions. Ap-
proximate domains of applicability: (a) 0<Q<1; (b) @>1.

(0.5M?) 13 at this point. One also finds that the @ value
at which the respective Cg values are equal is about
0.125. Thus, the actual value of Cg for the (0, ) situa-
tion will exceed that for the (0, 0) case over most of the
frequency range of ordinary interest (0<£ <1). Note,
however, that (Cy—C,) for the (0, « ) case only exceeds
that for (0, 0) when M > (3/2)[3+(5)V/*]=7.85.

V. (0, 0) SITUATION

A, Equivalent Circuits

In the (0,0) ideal-polarized-electrode case, earlier
work!® led to an equivalent circuit made up of C, in
parallel with a single branch consisting of a series com-
bination of a resistance Rs and capacitance Cs. The
impedance of this series branch, Zs, is Vp1=[Vr—
iwC, ' For 0<Q <1, Rs and Cgs were found to be
essentially frequency independent, leading to the equiv-
alent circuit of Fig. 5(a). I have represented the space-
charge part of the capacitance (the double-layer
capacitance), (Co—C,), by sC, to distinguish it from
the different (Co—C,) which applies in the (0, «)
situation. Note that for large M, sC,=(M—1)C,=
MC,, and the resistance shown, Ry, approaches R,=
G, The series branch yields simple Debye dispersion
in this 0<Q <1 normalized frequency range and is con-
sistent with the corresponding results listed in Table I.

ROSS MACDONALD

Table I shows that for (0,0) and Q>>1, Rg=Gg 1=
[14 (2M*2)~V7]R,. Thus for @— =, Rs—R,,, the bulk
resistance of the material. Rg is within 19 of R, at
Q=5X10%/M?, a value less than unity for M>102/v2.
We may now define an interface impedance Z; by re-
moving the limiting resistance R, from Zg. Therefore,
Z:=75— R=Rg;+ (iwCs)~, where Rs;=Rs—R,. For
the region of applicability of Fig. 5(a), Rsi~R./2M
for M>>1. Thus, it will frequently be negligible com-
pared to R,

One may derive Z; itself directly for all Q from the
results of earlier work!® by recognizing that the complex
quantity N given there is Yr/iwC,. Direct calculation
then gives, after simplification,

Vo= L =71
iN— Gw =L N
iQ{ M (1412) /2 coth[ M (1+4Q)1?]—1}

- 1440 - )

Later on this important result will be used further.
The results of Table I, or Eq. (9), lead for @>>1 to

Rsi=2(2M*2) V2R o= [Ro/2M*C o ]2 =m/ ()2, (10)
and
Cs=[2M?/QV*C,
=[2M2C,/R w2
=Y/ (w)?=Cy,
= (V2l4/Lp) (¢/87Lp), (11)
where
m=[R./2M*C,]"*= (kT/é%) (2D,)~"*, (12)

and we have used u./D.=e/kT. Note that # is an
intrinsic property of the material as it should be. For
M =3, Ce=MC,~e/8rLp, where Cy is the total low-
frequency-limiting capacitance/unit area. Substituting
for M in Eq. (12), one obtains n=2Cy [ 7p/2]"2

The series combination of Cs and Rg;, the interface
impedance Z;, is equal in the present range to the
Warburg impedance!!

Zw=n(1—1)/(w)'?,

where here n=m and Zw=~Zw,. The corresponding
parallel components of Zw ™! are Y= (w)2(1+14)/2n.
Note that we may also write (Zw,/R,) = (iM*Q)~1/2,

(13)

Table II. Approximate expressions for Q in various regions.

Conditions (0, 0) (0, )
(0,0): 0<a<1
su/AsQ2 L2/
0, ®): (10/M)2<0<0.1
a1 [2MeQ] [2MeQ] e
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in agreement with Eq. (9) in this limit. Equations (10)
and (11) for Rs; and Cs are in full agreement with
standard Faradaic admittance results®~ applying when
there is an infinitely fast reaction between a reacting
electrode and a potential-determining univalent ion in
a solution of indifferent electrolyte. Here, however, the
Warburg impedance appears only for @3>1, not for all &;
there is no Faradic current; there are two electrodes;
and no indifferent electrolyte is present. The present
result demonstrates explicitly for the first time that the
Warburg impedance appears (for @>1) with ideal
polarized electrodes (no discharge, no reaction, no
specific adsorption). This result is, of course, implicit in
but was unrecognized in earlier work.!:21° The reason for
the appearance of Zyw is not far to find, however, and its
presence not as surprising as it seems at first. For suffi-
ciently high normalized frequencies (€2>>1), there is in-
sufficient time for a space—charge layer to form in the
neighborhood of a blocking electrode during a single
half-cycle of the applied sinusoidal disturbance. There
is then no ideal double layer capacitance, yet the current
through the electrode is a pure displacement current and
is controlled solely by plane diffusion.!s

Figure 5(b) shows the equivalent circuit applicable
for the (0,0) situation when ©3>1. The conventional
symbol for a Warburg impedance has been used here.”®
Now the ratio of Cy to the series Warburg capaci-
tance, Cw,, of Eq. (11) is clearly [Q/2]"2, appreciably
greater than unity for the @3>1 region. Further,
Cw,/C,=M[2/Q]V? is itself also much greater than
unity over a considerable part of the 23>1 region when
M 2102 as it usually is in electrolyte situations. There
is thus frequently a considerable span of @ values over
which Cw, should be measurable. It is of interest to note
that QCw,/C,=[2M?Q 2= tans, the loss tangent in
this relative frequency range including R, not that of
the Warburg impedance alone, which is unity. More
discussion of the implications of the present and suc-
ceeding results for the electrolyte double layer area will
be presented in the final section.

B. Interface Quantities

In electrolyte double layer and reaction kinetics
studies, much attention is given to the impedance of
the interface double laver region, Z;. Normalizing with
R.,asinEq. (9), leads one to Z;xy = Rsiv+[1Q(C:/Cy) T
Here, Rsiv=Rs:/R,. It is important to emphasize that
over the entire range 0<Q< o, Rg; and Cg are inde-
pendent of / for M>>1 and are hence thus truly intrinsic
interface quantities in the present (0, 0) ideal polarized
electrodes situation. For example, for M>>1 and 0L
2 <1, Cs—(Co—C,) =siC,=2(M—1)C,=2MCy=¢/8nLp,
and Rg;=Rs—R.—Rsix=Ro—R,.=[{(As/s?) —1 R
[(M~2)/2(M—1)*]Ru~(2M)"'Ro=Lp/ (2uneco). In
contradistinction it is clear from Table I that for I>>1
the quantities Cp and (G,—Gp) are proportional to =2
for M>>1. Further, for M>>1 and (AsQ/s5,)2>1, the re-
sults of Table T also show that Cpx[~? and Gpell.

2033
10 ——————
7
L ; _
/
08} / |
| / Csn = Rei/Rsig i
//
06 / .
/
L / )
/
04 / (0,0) ]
M 5 10°
02 .
0 ) L L n L 1 1 L 1
0 ! 2
~|/2
Q

Fic. 6. The normalized interface quantities Csy and Rgi/ Rgio
vs @V for M 2108,

Thus, Cp o i72 for all @ (s,/ Ap)==M . Since the parallel
quantities are dependent on [ over most or all of the
frequency range, only the series ones are here appro-
priate as interface or double layer elements. The de-
pendence of Cp and Cs on the concentration ¢, is also
of interest. For 2—0 and M>>1, they both are propor-
tional to cg!/2. Alternatively, for M>>1 and @>>1, they
are both proportional to ¢, itself.

Figure 6, using V2 as abscissa, shows the limiting
Warburg behavior at the left and the final low-frequency
approach to unity of the normalized interface quantities
Csy and Rsi/Rgyn. For M 2103, these variables are
essentially identical for all . We may emphasize the
other end of the significant frequency spectrum by
plotting these quantities times 22 vs Q'2, as in Fig. 7.
The final @— oo limiting value of both variables is V2.
Also shown in Fig. 7 is 8;= tan™1(Q; 1), the loss angle
for Z;, not Zp. Here the interface quality factor (; is
given by (wRs:Cs) = (QRsivssCsn) "

C. Transient Response

The response of the interface region to a step function
of voltage, Vyup(t), is of especial interest since some
approximation to it is commonly measured in electro-
lyte potentiostatic experiments.’® Here u(f) is the
Heaviside unit step function, and the voltage V, is, as
usual, taken as much less than 27/e in magnitude to
ensure linear system response. Let 7;(f) be the current
that flows when Vou(t) is applied to the initially un-
charged electrode-interface region; for a linear system
this is also the discharge current when the system
charged to V, is suddenly short circuited.

Linear system response theory” % yields I,(f)=
VoL [ Y:(p)/p], where £1 denotes the inverse Laplace
transform, and p (not to be confused with a positive
charge concentration) is the complex transform variable,
whose imaginary part is w. Using Eq. (9), we first form
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F1c. 7. The quantities QY2Csy, QY2Rg;/Rgi0, and the interface
loss angle 8; =tan™1Q;™! vs QV2 for M 2 10%.

V./i(Co—C,) =V x/iQs, then replace i@ by prp
throughout. The result of the inverse transform is, in
terms of the normalized current 7.,

11'NETDI¢/(C0—C0) Vo
_ C/XB(—I/‘/TD) { M
(

(r—1) wi/Tp) Y2
><[1+2§1 eXp(—— 7;2/1[:)]—1} (14)

We have plotted I,y vs (¢/7p)? in Fig. 8 for several
M values. For ¢t <0.017p, the M =10% curve is closely
proportional to t7V2. There is no significant difference
between the M =10% curves and those for larger M.
Further, the only important difference between this
curve and all those between M =10 and 10® arises only
from the M/(r—1)=M/(M—1) factor in (14), since
the infinite series terms only become significant when
t/tp 2M?, a region where I; will have decayed to too
small a value to measure for M >10. The dashed M =10°
curve of Fig. 8 is plotted semilog, using the top abscissa
scale, rather than log-log. We see that the actual
response for 0.04 <t/rp<M?, which is proportional to
(t/7p)~ V% exp(~—t/7p), would certainly be mistaken for
pure exponential decay if somewhat inaccurate experi-
mental data of limited time span were used and no
attempt were made to fit to the form of (14). Further,
one would be very tempted to identify the response as
the sum of two exponentials since end filtering gives an
initial curve which is essentially straight for (¢#/7p)* 2
0.02.

The superb approximation of omitting the infinite
series terms for M 210 is equivalent to approximating
the M>>1 frequency response by

Vou=iQM/(144Q) 12 (15)

in place of (9). This simple and significant result will be
discussed later.

ROSS MACDONALD

Sometimes the charge, as well as or instead of current,
is examined. Let

(D) = /tli(i)dt
0

and actually consider ¢.x=g¢./(Co—C,) Vy, the effective
time-varying capacitance, normalized to unity at {= .

We find

1/2 ©
gin= = erf<i> + X {exp(ZnM)
1'—1 TD n=1
X rf[<i>l/2+(~~LM )] (—2ud)
TNes) TGy [T P2

ol -

—(r—l)“[l— exp(— é)] . (16)

It is readily verified that as t—«, gxy—1. Figure 9
shows computer-calculated results for M =1, 3, and 10,
Again, all series terms may be neglected for M >10.
Clearly for 0< (¢/7p) "2 <0.3, ¢.(¢) is accurately propor-
tional to £/2 for M =103,

It should be pointed out that when the transient
response of the Zg rather than the Z, part of the system
is considered, the current I»(#) which flows upon appli-
cation of Vouy(f) to the originally uncharged system has
an initial value not of infinity, as in Fig. 8, but of V,/R..
For comparison, the corresponding initial value of [py=
rolp/(Co—C,) Vo is M~ for M>>1. Although it is pos-

(T/TD)I/Z
0 02 04 06 08 10 1.2
100 T T
n ]
i (0,0) .
K
\
10 = —
=\ 3
Tin 5. :
= =
ogb—t vl b 1 LI
0.0l ol ! 10
(+/75)"?

Fic. 8. The normalized interface charging current /;y in
response to a step function of applied potential vs (#/7p)!/2 for
several M values; log-log and semilog representations.
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sible to carry out the inverse Laplace transform of
Yen(p)/p when M>>1 so that (15) is applicable, the .
result is still quite complicated and will not be given g
here. The final value theorem of transform theory shows o AN .
in this case that, as expected, ¢p(?) still approaches, as 2R
it must, (Co—C,) Vo=5:C,V, as t— o . The time required ®
to achieve essentially this final value will generally be Y
much longer than rp, of course, and is of the order of 1T —\ WV
Mrp for M>>1. $4Cq Ro=(A4/28%) Ry
VL (0, =) SITUATION (a)
A. Equivalent Circuits jl IL
In this case, the results already given allow us to Cq
construct the three equivalent circuits of Fig. 10. In
b 'AYA% -0

Fig. 10(a) note that for M>1, s.C,~=M?C,/12, and o

R=2(14/5)R,. Further, the two separate 2R, resist- 2Ry
ances which appear in Figs. 10(b) and 10(c) are only
equal because of our present simplifying choice pn= . \AL AN

The parallel 2R, branch here arises from the discharging
negative charge carriers; the other 2R,, resistance must Zy, 2Ry
therefore be associated with the blocked positive ! (b)
carriers. The Warburg impedances in 10(b) and 10(c)
are defined in the next section. In the limit of high
frequencies, @— o« , Zy—0, and the parallel combination { }
of the two resistive branches is just R, '=G.= Cq
o NN\ o
2R
1.0 T T 1
M=I \ A [ AN\
- ! 3 3 - 2R
{ 10 Iy ©
] / d2
o8k | / _ (c)
! /
I’ // // Fic. 10. Equivalent circuits for (0, ©) boundary conditions.
B | / / - Approximate domains of applicability: (a) 0<Q<S10/M%; (b)
I ; / (10/M)2<0<0.1; (c) &1,
os- || [/ / -
! // / eco(nttp) /1= 2uneco/! as it must be. Note, however,
q N ,I / / (0,0) 4 that Rg is only within 1% of 2R, for M*Q> 5X 103
" // / Although Friauf? considers the u.7u, case, he gives
oal- I 7 | no exact closed-form expression for admittance or im-
) J / pedance and doesn’t attempt to isolate a frequency-
J independent parallel conductance path. We can use
-l -1 Friauf’s results, however, to provide p,#u, generaliza-
tions to the (0, ©) case Cp/C, and Gp/G,, expressions
02 - of Table I for (10/M)?<Q <50.1. If we write as before
Q=wrp, with 75=C,/G,, we must now use G,=
eco(un—tpp) /I; the expression for M already given re-
I T mains unchanged. Friauf’s results then lead to Cp/Cy==
Q32(2M*)~12N  and 1—(Gp/G,) =0 V2(2M?%)712N,
0 I l I L l l where the correction factor is
0 0.2 04 06 0.8 1.0 1.2 1.4
= 3 27]1/2
(-I-/TD)I/Z N [:4Dn /Dp(Dn+Dp) ] ’ (17)
equal to unity for equal diffusion coefficients. Here

F16. 9. The normalized interface region charge g;x vs (¢/7p)V2 . . .
for several M values. where negative charge carriers discharge, clearly V may
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be much larger than unity if D,>>D,. Then N~
2(Dn/Dy) "2 Somewhat more surprising is the result
that in this normalized frequency range when D,—0,
Cp—0 and Gp—G,. Note, however, that in the limit
D,—0 there will be no discharge. Here, of course, Gp
involves all parallel conductance since no parallel branch
containing part of G, has been removed.

When u,>u, and when there may be in addition
some discharge of charge carriers of both signs, it still
seems possible and important to remove a frequency-
independent parallel conductance branch from ¥ as in
the present work. Such a branch will provide the needed
direct path for the discharge current which flows. Its
value, which may involve both u, and g,, must equal
the @—0 value of Re(¥r). Although the analysis has
not yet been carried out in the general case, I believe
removal of such a branch is essential, as it is in the pre-
sent (0, © ), u, =pu, situation, to the establishment of the
most meaningful and useful equivalent circuit for the
over-all system.

B. Interface Quantities

An “interface” impedance, Z;=Rgs:+ (iwCs)™, may
be defined in the present (0, ) case by the same
procedure used in the blocking situation. First, note
that Zg=Vp'= { Vp—[{wC,+ (I/unecy) ]}~ Since here
Rs—2R =1/upeco as Q— o, it is evident that Z; should
be defined as Zs— (I/upecy), rather than the Zg— R, of
the (0, 0) case. T have distinguished above between the
two 2R, terms, I/uqeco and {/ugeco, in order to indicate
how the subtractions should be made in an unequal
mobility case. Normalized quantities of interest are
Zin=Z;/2R, and Rs;y=Rs/2R,,. Now the prescription
given above for Z; yields

Yiv= Yi/(%Gm) =Zn!
= [i9/2(1442) J(M (i+12) V2 coth[ M (14-40) V2]
— 24 (i) M (49) ¥2(14-iQ) coth[ M (iQ)¥2]—1}).
(18)

Since there are two successive C, < @~V/2 regions in the
present discharge situation, we may expect to find two
separate Warburg impedances, applying for different
frequency regions. In the blocking situation, the War-
burg impedance was associated with a series R,,. Here,
however, Zw is associated with 2R.. The results of
Table I lead to

Zi—Zwa=1y,(1—1) /(@)1
for (10/M)2<2<0.1 and to
Zway=ny,(1—1) /(w)*?
for @>>1. Here

1 =[8R./M°C, 1= (kT /é%c0) (D,/8)>  (19)

and

nay=[ 2R/ M°C, 2= (kT /%) (D,/2) 12 (20)

J. ROSS MACDONALD

Since nq¢, and nq, are independent of 7, Cs and Rg; are
properly intrinsic interface quantities in the region
(10/M)2 <0< o,

Alternatively, the present results may be expressed as

(ZWd,/ZRoo) = 2/(1M2Q) e
and

(Zwa/2Rs) = (iM*Q) 1,

equal to (Zw,/R,,) . The equality of the 23>1 normalized
Warburg impedances for the (0,0) and (0, =) situa-
tions is a necessary result. The high-frequency limit for
the impedance arising from mobile charges must be
essentially the same in the two cases. The factor of 2
difference in the actual impedance magnitudes and
hence between 74, and #, arises from the presence of
equally mobile charges of both signs in the (0, 0) case,
while only positive charges effectively contribute to the
series 2R, and the Warburg impedance in the present
(0, ) case. More interesting is the ratio

ZWdl/ZW@:ndl/ndz: 2

found here. No obvious simple physical explanation
presents itself for 74, applying at lower relative fre-
quencies, to be twice nq,. On the other hand, Zw, /2, the
impedance associated with only one of the two elec-
trodes, agrees with the usual single-electrode Warburg
result for a redox reaction involving univalent ions
having equal diffusion coefficients and equal bulk
concentrations.

Let us next consider the low-frequency region of

T [ T I T l T I T l
10 —
(0, o)
= M=104
o'
IO—Z_
1073
R
-4 SiN _
) .
L [2RowCs] 4
TN [T RS I S
ol ] 10 102 103 10*

Q—IIZ

Fi1c. 11. Log-log plot showing dependence of the reactive and
resistive components of Z; 5 on 2712 for M =104
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approximate constancy of Zs and Z;: 0<Q S (10/M?%).
Now as Q—0, Cs—(Co—C,) =s4C;. Equation (5) yields
Cs—{(M?/6)C, as M—0. For the more interesting case
of M 23, wefind (Co—Co)=2{(M?/12)+[ (M —1)/4]}C,.
The first term will be much larger than the others for
almost all cases of practical interest (M>>1). This term
is proportional to / and to ¢,; the second term is inde-
pendent of /; and the final term is inversely proportional
to I. Using Eq. (8), we also find for M>>1,

Rsiv—[(1—Guw) /(Gow]

Q-0

= (oMM —3) /(B MO+ EM+-S5d =M +-D)

2

% (21)

where the final ratio applies for M— . Therefore, for
large M and Q—0, Rs,—Rsi~4R./5 and is also propor-
tional to !, unlike the (0, 0) Rs; which is independent of /.

In the range Q < (10/M?), which varies as /72, we
thus find the dominant terms of Cs and Rg; both propor-
tional to ! and hence extensive, not intensive quantities!
The larger the I, the larger the low-frequency limiting
capacitance but the smaller the frequency range over
which it is applicable. For example, if 2=1 corresponds
to w=10" rad/sec and if M =104, this frequency range
extends up to only about w=1 rad/sec. Note that in
this case, however, (Co—C,) is M /1222833 times larger
in the (0, ©) case than in the blocking (0, 0) case!
Predominant discharge of a charge carrier of a single
sign with M>>1 may be a partial explanation for the
exceptionally large value of Cy~15 pF/cm? found by
Solomon, Sher, and Muller® for a small single crystal
sample of LaF;. The explanation can only be partial,
however, because these authors found C,, determined
from integration of the current discharge in a transient
response experiment, to be proportional to V,, the

07 T T T H l T T T T | T T T T I T T T T
06— (0, ) -
0.5 _
04

L . s N
03 [2RgwCg] - Rsin -

= /// -
02 _
o1 M3103 i

0 S Y W S NN U SN WA U NS TR VUV NS T H TN S S Y
0 0l 0.2 0.3 0.4
2 q-i/2
[M"a]

Fic. 12. Linear plot showing how [2R.wCs]™! and Rgix depend
on (M?Q)~V2 for M > 107,
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Fic. 13. Dependence of the resistive and reactive quantities
T: and U; on (M*2)'? showing Warburg regions for M =10% and
105. Also shown is the loss angle é;.

charging voltage applied, rather than independent
Of Vo.

The surprising proportionality to / of what should be
intrinsic interface quantities is the reason we put the
word “interface” in quotations when it first appeared
in this section. Clearly, for @ <(10/M?) the prescrip-
tion followed to obtain Z; does not yield an intrinsic
impedance. To obtain one, we must, for large M,
subtract Rgs and subtract {(M?/12)—(1/4)}C, from
Cs. The remaining true interface impedance in the
present case is made up only of the space-charge capac-
itance MC,/4. The dominant capacitance, (M?/12)C,,
clearly does not arise from interface space charge. More
light will be shed on this matter later.

Figure 11 shows how the components of Z: the
normalized “‘interface” reactance, (wCs)™!/2R.=
(2542Cs)™", and resistance, Rs;y, depend on @72, Note
the transition from the final @—w Warburg behavior
at the left to the lower-frequency Warburg response,
which finally gives way at sufficiently low relative
frequencies to a constant R,y and a capacitative react-
ance proportional to -1 The lower-frequency response
is plotted on a linear scale in Fig. 12 using (M?2Q)~112
as abscissa in order to make the results closely applicable
for all M> 100 or so.

Deviations from Warburg behavior show up quite well
if we define and examine T;= (2M2Q)?Rg;y and U;=
(2M2Q)2(25,0Cs) L, where we have divided the quan-
tities of Figs. 11 and 12 by their final Q— mutual
Warburg response value. Figure 13 shows how these
quantities, and the loss angle 8;, depend on (M%2)V?
for M =10 and 10°. The two Warburg regions, with
ordinates 2 and 1, stand out clearly.

The “interface’” admittance ¥; may be written ¥,=
Gp+iwCip, where the P subscript is used to indicate
parallel connection. Sometimes the real and imaginary
parts of Zg, Z;, Yp, or ¥, have been plotted against each
other in the complex plane, as in the circle diagram of
electrical engineering. De Levie® has proposed plotting
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the parts of ¥,/w in this fashion and shown it to be a
useful approach. I believe a slightly better procedure,
consistent with hallowed usage in dielectric response
analysis, is to consider instead V,/iw=Cp—i{Gip/w).
Since Cip—(Co—C,) as Q—0, it is finally desirable to
use the normalized quantity ¥./[iw(Co—C,)]=Vin/
2iQs4 (Vin/1Qs, for the blocking case), plotting the real
part on the real axis and the magnitude of the imaginary
part on the imaginary axis. With the present normaliza-
tion, this is completely equivalent to plotting the real
and imaginary parts of the usual dielectric function
(¢*—ew)/(€9—¢€,), where € is a complex dielectric con-
stant whose real part reaches ¢ as w—0 and falls to €,
as w—o . Such a construction, a parametric function of
w or Q, is frequently termed a Cole-Cole plot.?!

Figure 14 shows such a plot for both the (0,0) and
(0, =) situations with Cipy=C,p/(Co—C,). The points
on the curves indicate values of ©. The top semicircle
is the result obtained for simple Debye dispersion,
(14iQ2)~". Now Eq. (15) shows that for M =10,
Vi/[iw(Co—C,p) J=[M /(M — 1) [ 14T for the (0,0)
case. Except for the factor M /(M —1), this is just the
expression for Davidson—-Cole dispersion? when the
Davidson—-Cole parameter 8 is 0.3. Such dispersion may
be interpreted as arising from a continuous distribution
of relaxation times. Glarum® has shown that it may
arise from a diffusion situation; the present results
identify it with another diffusion process, plane dif-
fusion of charge carriers.

The (0, 0) curve of Fig. 14 was drawn for M = 1000,
where the difference between M /(M —1) and unity can
be neglected. The same curve, multiplied by M /(M —1)
is, however, also applicable for M values down to 10 or
so. Very nearly the same shape is still found even for
M=1, but the relative frequencies are then shifted
clockwise in a nonlinear fashion.

Figure 14 indicates that the (0, ) curve is quite
close to that for the (0, 0) situation, although the rela-
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tive frequency magnitudes are quite different. The final
—o Warburg region doesn’t show up on the (0, )
curve for M>>1 since it then occurs too near the origin
to be distinguished. Of course, the left, asymptotically
linear, portion of both curves is nevertheless associated
with Warburg response: that for @—e in the (0,0)
case, and that associated with ©3>100/M? for the
(0, ©) situation. Although the (0, ) curve is stated
to hold only for M>>1, computer calculation shows a
difference of less than 39, between M =1 and M >10°
points evaluated at the same M?Q value such as 1, 10,
or 100. Thus for practical purposes this curve holds for
all M values of interest.

Although the shapes of the (0, 0) and (0, «) curves
are similar, the difference in normalized frequency
response precludes direct identification of the (0, «)
results with Davidson-Cole dispersion even though the
response may certainly be associated with a distribution
of relaxation times if desired.”

C. Transient Response

Using Eq. (21) and the procedure already described
for the (0, 0) case, we may readily calculate the current
I,(¢) for a step function of voltage applied to the part
of the system described by ¥,y alone. We shall do so,
using

Y/Zw(co 7)Y (P)/P(CU 0)EY1'N(P)/2PTDSd,

to allow comparison with the (0, 0) calculations, but
must caution that the results are unlikely to correspond
very well with potentiostatic measurements because of
the ! dependence of Z; and ¥, In fact, the present
results show that potentiostatic methods are inappro-
priate in the (0, =) case for long times. Here it would
be better to begin with ¥p instead of ¥; (that is, include
the series 2R, resistance in the system) and compare
with experimental results obtained with the voltage
step method,"® where the step voltage is applied across



ELECTROLYSIS AND SPACE CHARGE

the entire svstem. To do so, one would need to subtract
from the total system current that arising from the
immediate charging of C, and that flowing through the
parallel discharge path. Unfortunately, the inverse
transform associated with ¥p/iw does not seem very
tractable.

For the “interface” part of the system, we obtain

=T,
=<1+ exiid—t/rp)>
(o) T+ & ool )1

(22)

The great similarity to the (0, 0) result of Eq. (14) will
be obvious. Here, however, the part which appeared
in the (0,0) expression is multiplied by the factor
(r—1) /454 which is much less than unity for M>>1.
The charge

0= [ Lwa

will thus largely arise from the part of the integrand not
multiplied by exp(—¢/7p) and will not approach unity
until #/rp~M?2. Thus, unlike the (0,0) situation the
infinite series is important in the (0, «) case for all M.
Rather than give an explicit expression for ¢,y as before,
we shall here content ourselves with showing computer
calculated curves of this quantity.

Figure 15 shows the (0, ) “Interface’ region current
dependence for several M values. Here we have actually
plotted M2,y rather than I,y in order to bring curves
for all M values as close together as possible. Further,
we have used the time variable (¢/M?rp)V? rather than
the (¢/7p)"? employed in Fig. 8. The curves show that
I, exhibits 172 behavior for (¢/M?%*rp)¥?<0.02 and
begins to fall off very rapidly for ({/M?rp)¥220.6.
Calculations for different M values show that curves
for all M >10° are virtually indistinguishable from the
10? curve. Even the M =100 curve falls very close to
the M =10% curve. As M decreases from 10 towards
unity, the curves again approach closer to the M =103
curve, as shown by that for M =3. The actual (0, =)
M=1 curve is virtually undistinguishable from the
M =1 curve for the (0, 0) case of Fig. 8. This isn’t too
surprising since they both involve essentially only the
final Warburg region. Note that the semilog plot for
M =10° shows no appreciable straight-line region of
approximately exponential decay as it did in the (0, 0)
case.

It is worth noting that in the (0, 0) case the initial
({/rp<<1) current I; (not the normalized current) is
MVo/R.(mt/rp)12. In the main range of (0, o )¢1/2
decay, 1<i/rp<<M?, I, turns out to be one-fourth of
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Fic. 15. The normalized charging current I;x times M? vs
(t/ M?rp) V2 for several M values; log-log and semilog representa-
tions.

the above value. Thus, I; is independent of ! for both
situations in these time intervals.

Figure 16 shows two calculated giv=g./(Co—C,)V,
curves. The shape of the M =10% curve is quite close
to that of the (0, 0) M =1 curve of Fig. 9. There is still a
region for (¢/M?*rp) Y2 <0.05, where ¢;(¢) is proportional
to #/2. Since M? may be very large indeed in practical
situations, the region of /=2 behavior for 7; and ¢; can
extend over a long, experimentally accessible time for
the (0, ) case. Experimentally, £ current behavior
with #~0.5 has been found® for a wide range of mate-
rials and conditions, from semi-insulating crystals to
electrolytes.?®

Although the current decay we have discussed for the
(0,0) and (0, ) situations is never pure exponential
and so precludes description in terms of a single time
constant, we have seen that the times 7p, Mrp, and
M?rp have entered naturally for M>>1. Crudely speak-
ing, 7p is the time for step potentiostatic charging in the
(0,0) case; M7p that for voltage step charging in this
case; and M2rp the order-of-magnitude time for charging
in the (0, =) case. In this latter case, charging of the
Y, region occurs by roughly 0.4M?rp. For more experi-
mentally accessible voltage step charging (step voltage
applied across Yp), the time for final charging should
be roughly several times 2R (Co—C,), itself equal for
M>>1 to (M?/6)7p, again of order of magnitude M2rp.

It is of interest to examine how the three basic times
above depend explicitly on €, I, T, u, and ¢y, where u is
used to denote either u, or u, here. One readily finds:
rpxe/uco; Mrpo (I/u) (¢/coT)V?; and M2rpocl?/uT.
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and 108.

Note that while all depend on u=!, M?%p is completely
independent of concentration and dielectric constant.
Since none of these times depends on applied voltage,
no ordinary transit time is involved.

D. Space-Charge and Diffusion Capacitance

We have found that for M>>1, (Cy—C,)—MC,x
(eco/TYY2 in the (0, 0) case, but (Co—C,)—M?C,/12 «
leo/T in the discharge situation. For the latter case,
(Co—C,) may be increased indefinitely by increasing /,
very different behavior from that of an ordinary plane-
parallel capacitor such as C,. Such behavior, is, how-
ever, reminiscent of that of the capacitance variation
of two concentric spheres, having very different radii,
as the larger radius increases. The present dependence
of Z; on [ suggests that the usual failure to consider [ as
significant in an experimental electrolyte situation with
discharge may explain some of the variability between
the results of different investigators who thought they
were isolating and comparing interface quantities alone.

The limiting capacitance (Co—C,) can reach tremen-
dous values under ordinary conditions. For example,
if C,=100 pF and M =105, (C,—C,)=(M?*/12)C,=
(1/12) F. Such large values are infrequently seen since
they generally appear only at ultra-low frequencies.
Nevertheless, all commercial solid capacitors show both
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some leakage (discharge or charge carriers of one or
both signs) and the phenomenon of charge soakage.
When charged over very long times they store much
more charge than can be accounted for by their nominal
(geometrical) capacitance. Motion of ions and/or elec-
trons, holes, or charged vacancies associated with the
present (0, o) sort of mechanism is probably sufficient
to explain this behavior. It is probably also the explana-
tion of the tremendous 0.1 C of charge collected in the
several-week discharge of a small F-centered KBr single
crystal capacitor with C; <1 pF and R ~107 Q.2
Charging currents for these units also frequently showed
a t7'2 behavior extending over long times. If the present
(0, ») treatment were directly applicable (unlikely,
since one would not expect equal mobilities and com-
pletely free discharge of charge carriers of one sign),
the above room-temperature results could be at least
partially explained with M~10% Lp~10—3 cm, ¢y~3X
10* ¢cm™3, and a mobility of about 10~% cm?/V-sec.
Since 7p~107" sec, the corresponding approximate time
constant for final charge or discharge, M?rp, is about
10° sec==28 h.

The very large possible values of (Cy—C,) and its
dominant extrinsic character make one wonder about
the space-charge distribution in the material. How
much of the low-frequency capacitance is associated
with the space charge? For simplicity, we shall examine
the space-charge distribution for Q—0. Let Vi *=
eVi/kT, where Vi is, as usual, the amplitude of the
applied sinusoidal voltage. Then define m*=m/c,V ¥,
pr¥=p1/coV1*, and W= (2x/I) —1. Here p; is the ampli-
tude of the sinusoidal component of positive charge
concentration. Table ITT summarizes the results ob-
tained for these normalized charge amplitudes for 2—0
and a positive voltage applied to the electrode at x=0.

Figure 17 shows the dependence on position of these
charges for M =10. This small a value of M has been
used to expand for clarity the curved portions of the
graph, which appear only very near W=41 for larger
M values. In both the table and figure we have actually
considered results for the (o, 0) situation rather than
the (0, =) one. The total positive charge is given in the
present linearized case by the real part of p=co+
p1 exp(iwt), with a similar expression for n. Figure 17
shows that p always remains equal to ¢, at the bound-
aries, as required by the (%, 0) boundary condition of

Tasre III. Comparison of normalized charge amplitudes
for the (0, 0) and (e, 0) situations at @=0 as functions of
W= (2x/l) ~1.

n* N
(0,0) — (sinhMW cschM) /2 (sinhM W cschM) /2
(@, 0) (sinhMW+W sinhM) (sichMW —W sinhM)

4 sinhM 4 sinhM
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free discharge of positive carriers. Further, since the
maximum value of the normalized quantities is 0.5, the
maximum perturbation of the original concentration ¢
is 4 Vi*co/2. Since V1* is, by the linearizing hypothesis,
much smaller than unity, the perturbation is much less
than ¢, as it must be since negative concentrations are
unphysical.

The table and figure show that in the (0, 0) case
there is indeed an interface region at each electrode and
an unperturbed bulk region. For the (0, ) situation,
however, the charge distributions are everywhere per-
turbed because of the discharge current (except at W=
+1 for p1*). It is very significant, nevertheless, that the
space-charge density, py=e¢(p1—m), is only appreciably
different from zero near the electrodes for both cases.
(This behavior also holds as well for @>0.) In fact, for
0—0 the p1= (ecoV1*) (sinhM W cschM) /2 for (0, =) is
just half of the p; applicable for (0, 0), even though
(Cy—C,), as calculated from the ac response with Q—0,
is extrinsic and generally far larger for (0, «) than for
{0,0).

If we integrate g from W =0 to W =1 and divide by
Vi, we obtain a static space—charge capacitance Csco,
equal to (MC,/2)(ctnhM —cschM) in the discharge
case. This capacitance should not include C, directly
and should therefore go to zero as M—0. We see that
it is nowhere near the ac (Co—C,)=2(M?C,/12) appro-
priate for M>>1 in the (0, ») case. For the blocking
situation, Csco is twice the above value and does
approach (Co—C,) = (r—1)C,=MC, for M>>1. These
results again make it evident that the large (0, =)
(Cy—C,) is not primarily associated with the space
charge localized near a given electrode. Such space
charge s intrinsic and interfacial for M>>1 just as in
the (0, 0) case. Thus, an interface or interphase region
abutting an electrode can be isolated even in the present
case if it is defined as the region where electroneutrality
fails, but its capacitance and resistance must not be
identified with the observable capacitance and resist-

ance of the system upon exclusion of the bulk resistance.
Since (Co—C,) in the (0, ) case is not, for M>>1,
primarily associated with space charge but instead with
diffusion and discharge, the present designation of Vp,
Cp, etc., as space-charge quantities is evidently not
very appropriate in this case.

A common method of calculating the static or dif-
ferential capacitance in a completely blocking linearized
space-charge situation is to use Co=Cor=(¢/4r)X
(dE,/dV1)o, where the derivative has been evaluated
at an electrode. For the (0, 0) case, one finds Cop=rC,,
in full agreement with the ac approach.! On the other
hand, for (0, ») Cor=[(r+1)/2]C,, again quite dif-
ferent from the ac C;. It has already been mentioned?®
that the direct calculation of effective static capacitance
in a situation with incompletely blocking electrodes is
a difficult and apparently not entirely solved problem.
The foregoing results illustrate the difhculty.

Although it is evidently impossible to obtain the
operationally well-defined ac (Co—C,) from the present
manipulations of the static space charge or surface field
in a discharge situation, it is worth considering the
operational situation which would be used to determine
the static capacitance. Let us again consider applying
a step function of voltage to the initially uncharged
svstem. We shall assume that C, and the parallel con-
ductance branch, here G./2, have been measured and
are known. The current associated with these elements
can therefore be subtracted from the total charging
current. Now if the remaining current, which flows in
the Zg branch for sinusoidal excitation, is integrated
from ¢=0 to «, one must obtain the total charge which
can be stored in the system (exclusive of that in C,).
We have already seen from the earlier transient response
calculation that this charge will be (Co—Cy)V,, con-
sistent with the ac (Co,—C,) found for @—0. This
necessary agreement of ac and transient capacitances
only holds for a linear system, where differential and
“static’” or integral capacitances are equal. For a non-
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linear system the static and differential (or small-signal
ac) capacitances are generally unequal.

The large low-frequency capacitance found in a dis-
charge (or faradaic) situation is frequently termed a
pseudocapacitance by electrochemists, presumably
because it is associated with an electrode reaction. The
present work has shown that this capacitance, (Co—C,),
while perhaps strange in some of its aspects, is still a
perfectly real capacitance associated with electrodes and
the bulk of the material. T therefore believe pseudoca-
pacitance is here somewhat of a misnomer. Further, our
discharge boundary condition merely requires that the
concentration of the discharging species remain unper-
turbed at the boundary of the system, an electrode. If
the mobile, discharging species present in the material
between electrodes is an electron, electrons merely need
to pass freely into (and from) the electrode and from
there into a current sink such as a signal generator or
battery. It thus seems better to consider that the large
(Co—C,) which appears is agsociated with a finite length
I and with a certain boundary condition (or even an
approximation to it) rather than always with a charge-
transfer electrochemical reaction occurring at the elec-
trode (hydrogen evolution, for example) or one in which
the electrode material directly participates.

VII. APPLICATION TO ELECTROLYTE
SITUATIONS

The present results have been derived for charge-
containing material between two identical blocking or
partly blocking plane, parallel electrodes separated by
a distance /. Although this configuration corresponds to
the usual situation for solid materials and such nearly
insulating materials as liquid crystals, aqueous electro-
lyte and fused salt experiments are usually carried out
differently. In addition to the electrode of major interest
a counter, or auxiliary, electrode is employed whose
interfacial impedance is negligible compared to that of
the primary electrode. Such a counter electrode may be
reversible (Ohmic, nonpolarizing, indifferent), or it may
be of such great area compared to that of the main
electrode that even though it is non-Ohmic its imped-
ance is still negligible compared to other impedances
present.

Now as we have seen in Fig. 17, independent of the
blocking conditions at the two electrodes the positive
and negative charge densities exhibit spatial antisym-
metry around the center point at x=12/2. At this point,
the original concentration ¢, of positive and negative
carriers always remains undisturbed. It is thus possible
in principle to put an Ohmic electrode at this position
without changing anything. This electrode must be
simultaneously Ohmic for charges of both signs; that is,
it must function as a source or sink of charges of both
signs. If half the original external voltage is applied
between the electrode of interest and the Ohmic elec-
trode, conditions in the region 0<x<1/2 are the same

ROSS MACDONALD

as before. Thus, insofar as the counter electrode is a
good approximation to Ohmic, the present results apply
directly to the usual electrolyte situation with the trans-
formation [—I/2, V,—V,/2. This doubles C, and G,
because of their direct / dependence. In addition, the
new (Cy—C,) will be twice the old value in the (0, 0)
situation for M>>1 since in the two-blocking-electrode
situation the two individual equal interface capacitances
are in series. For the (0, ») situation with M>>1, the
above introduction of an Ohmic electrode at x=1/2 will
halve (Co—C,) because of its direct proportionality to !
in this case but the presence of capacitance at one elec-
trode rather than two will restore (Co—C,) to its
original value. For many of the normalized quantities
of present interest, such as Cgy and Rg.n, the passage
from two identical electrodes to one (working) electrode
of interest and an indifferent electrode creates no change
at all. For others, a simple transformation takes care
of the matter. In the rest of this paper, we shall thus
continue to use an electrode separation of / and the two
identical-electrode results even for the electrolyte case.

When a much larger counter electrode is used than
the primary electrode, the present expression for C, will
no longer apply and the actual C; may be considerably
larger than e/4wl. This is unimportant since C, should
be determined experimentally anyway. Note, however,
that the area of the counter electrode cannot exceed
that of the working electrode without either destroying
the present one-dimensional character of the current
flow or changing it from plane to cylindrical or spherical
flow. Any of these changes would require changes in the
present analysis.

In the electrolyte case, a common distinction is made
between Faradaic and non-Faradaic processes. A
Faradaic process is defined as one in which the amount
of chemical reaction occurring is directly proportional
to the amount of charge passed across the electrode
boundary.? A typical non-Faradaic process is the charg-
ing of the double-layer capacitance of an ideal polarized
electrode. While a Faradaic current involves an electro-
chemical reaction (and thus electron transfer), the
present use of “discharge current” implies any kind of
current (except displacement current) entering the
electrode (together with an external circuit) as a sink
for such current. When the current is carried by elec-
trons both in the working material and the electrode,
no electrochemical reaction need occur at the electrode.
Thus, the present (0, ) treatment is not limited to a
Faradaic process for its discharge current. Nevertheless,
in the present section, I shall be primarily concerned
with discharging convection currents of ions (under-
going a charge-transfer reaction at an electrode), mass
transfer via ions, and Faradaic currents.

Figure 18 shows three equivalent circuits which have
been thought to be appropriate for the electrolyte situa-
tion with Faradaic current. Figure 18(a) follows from
the present work and includes all the circuits of Figs. 5
and 10. For the (0, 0) situation Rp= and Re=R,,.
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The frequency dependences of Rs; and Cs, which to-
gether form the impedance Z;, have already been dis-
cussed. Alternatively, for the (0, <) boundary condi-
tion, Rp=1/(uneco) and Re=1/(pyeco). The parallel
combination of Rr and Rg¢ is always R, the solution
resistance Re1. Further, Rgs;+Rc=Rs. It seems quite
clear that the general form of the Fig. 18(a) circuit
should apply for p.spu, as well as the present p,=u,
situation. It is not obvious, but seems probable to me,
that it also applies as well for the general (7p, 7,) dis-
charge boundary condition after reinterpretation of the
elements of the circuit.

Now since | Z; | —0 as @—c0, the @ limit of Fig.
18(a) is just C, and R,, in parallel. Thus, measurement
of the over-all admittance in the > 1 range with extrap-
olation” to Q= should yield R, and C, from the
extrapolated real and imaginary parts. The quantity C,
has almost always been ignored in electrolyte work; it
clearly should not he for £ > 1. It should be mentioned
that the expression G, = (u.+pp) eco/! is only an approx-
imation for usual cases of interest: high frequencies and
nonzero concentrations.?®® Complications of this char-
acter will be ignored (as they usually are elsewhere) in
the present idealized-model treatment.

It has already been implied that direct measurement
of Cp and Gp in a parallel bridge arrangement will
generally be impractical at such frequencies that Cp<K
C,. For M>>1, the value of © for which Cp=C, is M1/
for (0,0) and (2M?)~1/3 for (0, ), both less than 0.1
for M>10% The frequency range can be expanded to
Q~1 or more if bridge measurement can be made with
a series arrangement. If the equivalent circuit is believed
to be of the form of Fig. 18(a), the C, and Kr elements
should be determined separately (C, in the absence of
a discharging ion for example, and Rr as @—0 or by
transient response measurements) and then elements
equal to them put in parallel with the Rg and Cg ele-
ments of the bridge, provided equal bridge arm ratios
are employed. Then the Rs and Cg components of Zg
may be obtained at different frequencies directly from
the balanced-bridge values.

Armstrong, Race, and Thirsk® have presented Cp and
Cg values up to 400 kHz for 0.9M NaF in an essentially
ideal polarized electrode situation. Cp showed w2
behavior and Cs remained constant to the maximum
frequency. Although C, was not stated, 7p was probably
no larger than 10~% here, and the maximum @ achieved
must have been much less than unity. The above
authors give a careful discussion of problems of bridge
measurement for electrolytes and suggest that above
about 40 kHz a parallel rather than series bridge arrange-
ment should be employed. Using small electrode areas
and unequal bridge arm ratios, it may be possible,
however, to use the series arrangement to much higher
frequencies.

Many different equivalent circuits have been pro-
posed when Faradaic and non-Faradaic processes are
simultaneously present. Parsons? has recently reviewed
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Fic. 18. Equivalent circuits for the electrolyte situation
with discharge. (a) Following from present work; (b) Barker®;
(c) conventional.

them, with especial attention to the effects of adsorp-
tion of the reacting species on the electrode. Here we
are only concerned with situations where such adsorp-
tion is absent. Thus, Figs. 18(b) and 18(c) show two
circuits constructed to represent the situation without
adsorption.

Figure 18(b) was suggested by Barker.®* Although C,
is ignored, its absence is not serious for sufficiently low
frequencies. More serious, however, is the simultaneous
presence of both Ca; and Zw. Here Cq: is defined as the
zero-frequency double-layer differential capacitance and
R.o1 is the bulk solution resistance, R,. Now if Cw is the
Warburg capacitance of Zw, there is always a frequency
below which the impedance of Cy; exceeds that of Cw;
thus, as the circuit shows, the limiting low-frequency
capacitance is indeed Ca. Further, at sufficiently high
frequencies, the impedance of Cy is negligibly small
compared to that of C. Thus, Cw is properly the high-
frequency limiting capacitance.
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There are at least two main reasons, however, why
Fig. 18(b) is probably not entirely applicable in the
situation where both Faradaic and non-Faradaic proc-
esses are simultaneously present. First, it includes a
frequency-independent capacitance Cq. But at suffi-
ciently high frequencies, there will be no time to
establish a space-charge region at an electrode during
a half-cycle of the applied sinusoidal potential. Then if
Car is associated with space charge, it does not exist, a
stronger statement than to maintain that there is in-
sufficient time to charge (or discharge) it. Certainly it
seems valid to claim the nonexistence of Cg for @2>1,
where as we have seen in the present (0, «) treatment
only the final Warburg diffusion capacitance still ap-
pears. Even the magnitude of the Warburg impedance
in this region is generally very small compared to R,
however.

Second, we have seen in the (0, » ) situation that the
double-layer capacitance, (Co—C,) at low frequencies,
doesn’t persist to the frequency range where a Warburg
impedance appears. Instead, there is a smooth transi-
tion from one phenomenon, charging of the double-layer
capacitance, to the other, diffusion-limited current and
Warburg impedance. Thus, it appears improper in
general for both Cg; and Zw to be shown present for all
frequencies.

The circuit of Fig. 18(c) has been widely used!-16:32,3
for aqueous electrolytes and fused salts. Again no C,
appears while again a frequency-independent Cq; does.
Here, however, the prescription to obtain Cy; is either to
measure it in the absence of any discharge®%*% or to
obtain it by extrapolation to infinite frequency (pro-
vided R..>0).26:31.3%3 Here R, is the charge-transfer
resistance arising from a finite exchange current; it is
zero for a completely reversible electrode (infinite
exchange current).

If the circuit of Fig. 18(c) were indeed appropriate
and Cy were frequency independent, then it would be
proper to obtain Cq by high-frequency extrapolation
since | Zy =0 as the frequency is increased. Alterna-
tivelv, if Cyq; were unaffected by the presence or absence
of a Faradaic current, it could most conveniently be
obtained by measurement under conditions of no
Faradaic process present. If the present (0, «) results
are at all applicable to the electrolyte situation, it
appears that neither of the above possibilities is likely,
and, in fact, that Fig. 18(c) is not an entirely approp-
riate equivalent circuit.

In early analyses of electrolyte experiments simul-
taneously involving both Faradaic and non-Faradaic
processes, it was taken for granted that the processes
didn’t interact and that a priori separation was possible.
Although Grahame® discussed qualitatively some inter-
action effects, it was only considerably later®:%:7 that
the theoretical and experimental study of interaction
effects became popular. Even recently, Parsons® could
state that few experiments had been undertaken to
investigate such coupling effects. Finally, although the
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importance of coupling is still moot in general, De Levie
and Husovsky® suggest that coupling can be ignored
in the absence of specific adsorption. This matter will
be further discussed later on.

The present (0, ) idealized-model treatment is not
a perfect exemplar of the usual electrolyte situation
with discharge, which includes the presence of an indif-
ferent electrolyte, but it clearly shows that in the
absence of an indifferent electrolyte, discharge produces
a profound effect, such that Faradaic and non-Faradaic
processes are so coupled that they become almost indi-
visible parts of a single process. The effect of an indif-
ferent electrolvte will be examined later.

The working-electrode boundary condition for the
discharging species in the present (0, ») treatment
corresponds to that of a reversible or Ohmic electrode
(for that species). If 0<r,< =, so some discharge can
still occur, we may expect the appearance of a charge-
transfer resistance, as in Fig. 18(c). In the electrolyte
case, R., is related to the rate constant of the surface
reaction3 and is frequency independent. To the degree
that such a resistance would appear in a (0, 7,) treat-
ment with 7,< e, it seems necessary that it occur in
series with the Rp of Fig. 18(a). Since Rp is a hulk
resistance and R, a surface one, they could be dis-
tinguished, in principle, by their different dependence
on applied potential and on electrode separation.

The attentive reader will have noted that only in the
circuit of Fig. 18(a) is there a dc or static current path.
None is present in the 18(c) circuit because the Warburg
resistance, capacitance, and capacitative reactance ap-
proach infinity as w—0. Conditions for the maintenance
of a continuous current are discussed by Grahame.?
The present (r,, r,) boundary conditions allow a con-
tinuous current in response to a static applied voltage
Vo unless both 7, and 7, are zero. On the other hand,
the usual electrolyte treatments!®3:3 (hoth sinusoidal
steady state and transient) allow a depletion of the
concentration of the reacting ion at the electrode and
a buildup of the product of the reaction. There is there-
fore no static current, and the transient current even-
tually falls to zero when the forward and reverse reac-
tion rates become equal. In the present (0, « ) transient
treatment there is a steady current Jp=V,/Rr and a
steadily decreasing current 7, which decreases to zero
as f~—w and the final (Cy—C,) bulk capacitance is
charged. Thus, the processes are quite different in
general, although similarity may be expected for suffi-
ciently short times that depletion and the back reaction
remain unimportant.

Such similarity is indeed found in that both the
present treatment [Eq. (22)7] and electrolyte treat-
ments for reversible processes'®*® vield an initial cur-
rent decay proportional to /742, Such behavior is fre-
quently found experimentally whether there is or isn’t
a final static current. For example, Delahay®® gives an
experimental curve of current density vs /2 which he
fits approximately for short times by a current propor-
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tional to (1—at"?), where a is a constant. Actually, the
curve is closely proportional to £7/2 for the full time span
given. Frequently plotting #/2] rather than / alone will
be useful to show any deviation from ¢~ behavior.

It is also worth mentioning that Raleigh and Crowe®
have found charge results for transients in AgBr which
show #1/2 behavior over an appreciable span of time.
Although these authors believe they have found ideal
polarized electrode behavior with this system, their
times were many orders of magnitude too long for their
g« {2 curve to have arisen from the (0, 0) final Warburg
region, as in Fig. 9. As they suggest, their #/* behavior
is almost certainly associated with a Faradaic current,
perhaps either electronic or from discharging impurity
ions, as in Fig. 16. Here, of course, the time scale for
72 response can extend to very long times for sufficiently
large M.

Although both the conventional and present treat-
ments yield £2 initial current behavior, the actual
response is quite different in the two cases. We have
seen that integration from =0 to « of I, for both the
(0,0) and (0, =) cases leads to the necessary result
g:(0) =(Co—C,) Vo. On the other hand, although the
conventional electrolyte treatments lead to continu-
ously decreasing current-time curves which go to zero
as t—w, the total charge passed appears to be infinite.
This result cannot be ascribed to current passing through
a dc path, such as Rp of Fig. 18(a), since there is no
such path present in these treatments. It can, however,
be explained in terms of the way the Warburg imped-
ance occurs in the conventional equations and in such
circuits as Figs. 18(b) and 18(c).

All conventional electrolyte double-layer treatments
of discharge implicitly or explicitly assume that every-
thing interesting happens near the working electrode.
Further, they ignore electromigration, assume electro-
neutrality,** and consequently solve ordinary diffusion
equations with boundary conditions specified at the
electrode (x=0) and at x= . Thus, no finite / is even
introduced. It is natural then to ignore C,, although R,
or R, obtrudes and rarely can be ignored. The results
of the present treatment come from an analysis in which
electromigration is not ignored, electroneutrality is not
assumed, and Poisson’s equation holds exactly every-
where. Nevertheless, as might be expected we find that
electroneutrality actually applies very well, as usual,
everywhere except in the electrode interphase region.

The conventional treatments lead to a Warburg
impedance which appear at all frequencies, as in Figs.
18(b) or 18(c). On the other hand, the present exact
treatment of an idealized model with finite / leads, for
(0, =), to two Warburg regions, both occurring only
over limited frequency regions. The Warburg response
which appears here for (10/M)2<Q <0.1 may be asso-
ciated with the conventional electrolyte treatment
Warburg response. The reason why one appears over a
limited frequency range and the other for all frequencies
probably lies somewhat in the exact character of the
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present solution (no assumption of electroneutrality,
etc.), but mostly in the finite / assumed in the present
paper.

When a semi-infinite region is assumed, the diffusion
region can grow arbitrarily large as the frequency
becomes arbitrarily low. On the other hand, for finite !
this region eventually becomes limited by ! and the
Warburg resistance and capacitance must cease in-
creasing as the frequency decreases. As we have seen,
the limiting response occurs for ¢ <10/M2. This condi-
tion*2* corresponds to (I/2) <3l4; thus, (Co—C,) ap-
proaches close to its low-frequency limiting value when
there are less than three diffusion lengths contained in
(1/2). The spreading of the diffusion region through all
the length 7 at sufficiently low frequencies is, of course,
the reason why Rg; and (Co—C,) depend on / in the
(0, o) case. In the absence of a discharge current, there
is no coupling of what should be interface quantities to
the entire bulk of the material and then Rg; and
(Co—C,) are independent of I. The presence of a
Warburg impedance at all frequencies in the conven-
tional treatments of the interface region with a Faradaic
process present explains the infinite charge result men-
tioned above; it may be readily proved that the response
of a Warburg impedance to a small step function of
voltage involves a current whose integral over all time
is infinite. Thus we see that whenever experimental
frequencies or measuring times are sufficiently low or
long [@< (10/M)Z%], treatments such as the present
(0, =) one with finite not infinite [ are required.

It has become conventional in electrolyte work to
plot Rg; and (wCs)™' vs w12 as in Figs. 11 and 12 for
the corresponding normalized quantities. When R0,
the w—>o value of the series resistance (excluding the
bulk resistance) is just R.,; thus, in this case one obtains
a straight line for the resistance lying above that for
the capacitative reactance. Here, where R.;=0, the lines
coincide, as is often found experimentally.®4 Appar-
ently, measurements have not been carried to sufficiently
low frequencies that the separation between the lines,
as in the right of Fig. 12, shows up clearly. It is, of
course, also obvious that analysis of experimental results
in terms of the wrong equivalent circuit [say that of
Fig. 18(c¢) instead of that of 18(a) if the latter is the
proper one in a given situation] can lead to improper
deductions about various elements of the equivalent
circuit and about their frequency dependence.

In electrolyte solutions, it is usually found that the
over-all low-frequency limiting capacitance of an ideally
polarized electrode without specific adsorption is largely
determined by the capacitance C; of a “charge-free”
layer next to the electrode, rather than the present (0, 0)
space—charge (diffuse layer) capacitance (Co—C,)=
s3C,. This inner layer capacitance is thought to arise
from the presence of a monolayer or so of solvent
between the electrode and the rest of the solution.®—#
The capacitance of the layer depends only weakly on
the potential difference across it and generally falls in
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F16. 19. Approximate (uncoupled) equivalent circuit for the
(0, =) discharge case when an excess of indifferent electrolyte is
present.

the range of 15-45 uF/cm? Somewhat similar insulating
or charge-depleted layers next to an electrode have fre-
quently been suggested for the electrode-solid material
situation as well 244853

When the concentration ¢ is high and/or when the
potential difference between the electrode and the bulk
of the material appreciably exceeds #7/¢ in magnitude,
st:C, will be much larger than 45 uF/cm? Then, the
series combination of C; and s,C, will be dominated by
Ci, a capacitance essentially independent of frequency
until at least the high microwave range.” Under these
conditions, the (0, 0) equivalent circuit of Fig. 5(a) will
still be applicable if the capacitance 5,C, is replaced by
C1. It should be mentioned, however, that the eventual
high-frequency Warburg, or diffusion-effect, reduction
of Cy will cause C; to no longer dominate the series
combination of C; and Cs at some high relative fre-
quency. For example, the admittances of C; and Cg are
equal for the (0, 0) case at 2=2(MC,/C,)% Above this
frequency, the admittance of the diffusion capacitance
is the smaller, and it then begins to dominate the series
combination. Thus, even in this case, it appears to be
improper to obtain the double-layer capacitance [re-
garded as Cy, (Co—C,), or, properly, their series com-
bination] which is expected to apply at low relative
frequencies from capacitance measurements extrapo-
lated to infinite frequency in the usual way.

When a Faradaic process is present, it is frequently
found that the measured series capacitance at low fre-
quencies is of the order of 103-10* uF/cm?, far larger
than Cy. It is thus evident that C; cannot be in series
with (Co—C,) in the discharge case but that it is effec-
tively bypassed by the Faradaic current path. Physi-
cally, discharge cannot occur without charge carriers
passing through the inner layer, probably displacing
adsorbed solvent molecules as they do so. It thus
appears that in the general (7,,7,) discharge case (7,
and 7, not simultaneously zero), C; is of negligible
importance and may usually be ignored.

The treatment and discussion thus far have applied
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to a situation where positive and negative charge car-
riers having a common equilibrium concentration, ¢,
are simultaneously present. This assumption corre-
sponds to the usual (0,0) ideal polarized electrode
electrolyte situation (e.g., NaF in water with a dropping
mercury electrode) and to the preferred condition for
conduction experiments in solids. On the other hand,
it is customary, when an electrolytic Faradaic process
is under investigation to add a high concentration, say
a, of indifferent electrolyte. For simplicity, here and in
the rest of the paper, I assume univalent ions only
present. The indifferent solute is chosen to dissociate
into ions for which the working electrode is blocking,
or ideally polarized, over the entire range of applied
potentials of interest. The high ¢; reduces Lp, increases
M, and reduces the associated solution resistance R,,
which we shall here term Rp. In the absence of dis-
charge, the present (0,0) treatment should apply to
these ions. The large ¢; and corresponding large s,C,
virtually ensure that for all conditions of interest the
series combination of Cg and C,isessentially Cy. Further,
the small R (frequently as low as 10-100 Q-cm?)
causes the 2=1 point to occur at an actual frequency
beyond the usual limit of measurement (say >107
MHz).

We see that if there were no coupling here between
the ¢, Faradaic and the ¢ non-Faradaic processes, the
presence of a high concentration of indifferent electro-
lyte would add an additional parallel admittance to the
circuit of Fig. 18(a), consisting essentially of C; in series
with the small resistance Rgp. These elements would
remain frequency independent over the entire range of
measurement. The resulting equivalent circuit is shown
in Fig. 19. Although Faradaic and non-Faradaic proc-
esses are coupled by Poisson’s equation, nonnegligible
in the neighborhood of an electrode, the circuit of Fig.
19 may be useful under some conditions, and its implica-
tions will be discussed below. Its range of validity could
be assessed by a detailed space—charge treatment of the
present type in which four species of ions of any valence
were simultaneously present: blocked positive and nega-
tive ions of equilibrium concentration ¢, and different
positive and negative ions of equilibrium concentration
co (usually ¢<&¢;) having discharge parameters of 7,
and 7, (with 7, and 7, not simultaneously zero).

The Fig. 19 over-all equivalent circult arrived at
above differs from the conventional one of Fig. 18(c)
in two minor and two major ways. The minor differ-
ences are the presence of C, and the absence of R,,.
Clearly C, should be included if measurements extend
to sufficiently high frequencies that the reactance of C,
becomes comparable to the magnitude of the impedance
of any of the three remaining parallel branches. Al-
though R., is overtly omitted, it can be included when
appropriate in the Ry branch as discussed earlier. Note
that in the present uncoupled approximation changes
in ¢, and thus in Rp, do not affect Rp and R¢ at all.
Further it should be noted that although the entire
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equivalent circuit of Fig. 19 can be formally represented
by a noninfinite capacitor and resistor in series or in
parallel, the frequency dependences of the resulting
elements would be very much greater than those of the
elements shown in Fig. 19 and the physical interpreta-
tion of the new elements would be opaque.

One of the major differences arises from the present
finite-length approach, consistent with the finite length
actually employed in any experiment. This approach
leads not to the conventional Warburg resistance and
capacitance that indefinitely increase as the frequency
decreases but to elements which reach limiting values
depending on ! for sufficiently low frequency.

Second, there is a most significant difference in the
way the resistances enter. The bulk or solution resist-
ance has conventionally been operationally defined as
the limiting high-frequency resistance. In Fig. 19 this
resistance, applicable at frequencies where the capacita-
tive reactances of C; and Cs are much smaller than the
resistances in series with them, is clearly made up of the
parallel combination of Rr, R¢, and Rp. Thus when all
valences are equal to one, Roo1=[ (tnoeco/E)+ (upeco/t)+
(tnyFap) (e /DT, where the “0” and “1” mobility
subscripts associate ionic mobilities with their corre-
sponding equilibrium concentrations. Assuming reason-
able mobilities and ¢ >>¢y, one finds R.oi=Rp. In fact,
some of the main reasons for the use of a high-concentra-
tion indifferent electrolyte have been to minimize elec-
tromigration and to reduce R, thereby hopefully
allowing R, and other element values to be more
accurately determined. Further, in order to determine
Rp=R,,, one need not go to such high frequencies that
>>1 (here Q should be calculated using ¢;), but only
to the region where wRpCi>3>1, a condition usually
satisfied at a much lower frequency.

The resistance Ry is in series with everything else
in Fig. 18(c¢) while Rp=R,.1 is only in series with C; in
Fig. 19. This difference can lead to appreciable differ-
ence over-all response and again suggests that elements
derived from assuming the applicability of the conven-
tional circuit when the present over-all one is really
appropriate can be appreciably in error in parts of the
frequency range.

If we identify the present C; with the Cy; of Fig. 18(c),
then we may compare the Cy and Ry of 18(¢) with C;
and Rp of the present approximate circuit. If (wC;)™!
were small compared to the magnitudes of the imped-
ances of the other three parallel branches of the over-all
circuit, then Zp= Rp+ (1wC1)~" would be the dominant
or main current-carrying branch and the Faradaic ele-
ments only a small perturbation to the over-all situa-
tion. Now although Rz may be made much smaller than
Re, the inner layer capacitance C; will generally be far
smaller than Cgs at low frequencies. Thus both the Cg
and C; branches must usually be considered simultane-
ously over a considerable frequency span.

In the region where wRp(C1<<1, Rp may be neglected
compared to (wC;)~L. Then, C; appears exactly as does
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the Cq; of Fig. 18(c), in parallel with everything. Tt
may then be a temptation to put Rp in series with every-
thing, as in Fig. 18(c), but, as we have seen, this would
indeed be a poor approximation. It may be a poor
approximation even when cy—¢; coupling is properly
taken into account. Finally, note that when RS> Rp,
as is usually the case, it will be very easy for the
experimenter to ignore or forget about its existence
unless measurements are extended to sufficiently low
frequencies that Rr becomes the dominant resistance
of the equivalent circuit.

Note that if complete decoupling between the effects
of the ¢y and ¢ type ions is a good approximation and
thus the circuit of Fig. 19 is applicable, adding the ¢
indifferent or supporting electrolyte merely complicates
the determination of the Faradaic process elements,
rather than aids their determination as has been com-
monly expected. In actual fact, however, a high-concen-
tration indifferent electrolyte decouples from each other
the positive and negative charges of lower concentration
¢ and greatly reduces their electromigration. Their
effects can then be considered independently of each
other. It is important to emphasize, however, that even
in an exact solution of the problem the magnitude of ¢,
cannot influence Rp since this frequency-independent
resistance provides a dc path and the ¢ ions, being
blocked, cannot contribute to such a path. On the other
hand, an exact solution, which would include any
coupling effects in the space—charge region next to the
working electrode, would almost certainly lead to some
dependence of R¢ and the other elements in this branch
on ¢ if the present circuit geometry and structure even
remained applicable.

In the present treatment, the applied sinusoidal
potential amplitude V; or the transient potential V,
has been assumed much less than 27/e in magnitude
and has also been assumed to be a small perturbation
to the equilibrium condition of the system where the
concentration ¢, (and/or ¢;) is constant for all . In the
electrolyte situation this equilibrium condition corre-
sponds to the point of zero (electrode) charge (p.z.c.).
For the semiconductor case it is the flat-band condition.

In electrolyte double-layer experiments, a static bias
potential is usually applied as well as a small alternating
V; or transient Vy. Let us reference this bias potential
to the p.z.c. and designate it as ¥, Now | ¥,| may
greatly exceed #7'/e and thus perturb the static or
equilibrium concentrations of the charge carriers so that
they are far from homogeneous. In a completely block-
ing case, the presence of | ¥, [>kT /e will lead to an
equilibrium condition in which anions concentrate at
the anode and cations at the cathode. The small V; or
V, then represents a very small perturbation to this new
equilibrium. In a discharge case, ¥, will, of course, lead
to a continuous discharge current and may again greatly
perturb the steady state distribution of the various
charge carriers present.

In either a blocking or discharge case, the system
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responds nonlinearly to ¥, when the magnitude of this
potential is comparable to or greater than £7T/e. But
although the system is then nonlinear, V; or Vy, if their
magnitudes are much smaller than kT/e, “feel” only
the locally linear system. In essence, although all the
parameters of the system may depend nonlinearly on
¥, at a given fixed ¥, one can measure the parameter
values associated with this ¥, in a linear fashion. The
resulting parameter values are those of the linear sys-
tem which represents the response of the actual non-
linear system for infinitesimal perturbations about a
given state.

We may thus obtain resistance and capacitance values
and impedances for any ¥, The function of ¥, is then
to shift the system from one set of values to another.
It is fortunate that we can use a linear approach in this
way since the whole concept of impedance (more gen-
erally, immittance), in its usual formulation, is a child
of linearity. Of course, these considerations mean that
although a given equivalent circuit structure may apply
unchanged over a considerable range of ¥, at constant
frequency there are different values of its capacitative
and resistive elements for every different ¥,.

The present (0, 0) and (0, ») results apply exactly
only for ¥;=0. I know of only one approximate com-
puter calculation of space-charge frequency response
where the equilibrium charge carrier distribution was
perturbed and not taken homogeneous.® This treatment
unfortunately does not apply to the present situation
but was concerned with a space charge of negative
vacancies in a solid having no compensating charge of
opposite sign. Clearly, in order to carry out a proper
frequency response calculation for the present system
when W0, one would first require a static solution,
such as that of Ref. 54 for the (0, 0) case or one similar
to the dc solution of Ref. 25 in a continuous-current
discharge situation. Then, perturbations from this solu-
tion arising from a small applied sinusoidal potential
would be calculated to obtain the resulting alternating
current, impedances, and equivalent circuit elements.®

The space—charge explanation of large measured
capacitances in electrode-solid situations has some-
times been doubted® because experiments frequently
show little or no dependence of capacitance on applied
voltage amplitude over a range much larger than 27 /e.
At least part of such independence may arise from the
presence of a charge-free inner molecular layer in an
electrolyte and/or a depletion or exhaustion layer next
to the electrode abutting a solid. Such a layer may
arise from many causes; sometimes, for example, from
the “built-in”’ or diffusion potential associated with the
electrode-solid contact.?® If this potential is large
compared to any applied sinusoidally varying potential,
the amplitude of the latter shouldn’t affect the meas-
ured capacitance which, in turn, would be largely deter-
mined by the thickness of this region rather than by an
accumulation of space charge near the electrode. Fur-
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ther, in a discharge case such as (0, ), it may turn
out that the ac (Co—C,), which, as we have seen, isn’t
primarily a space-charge capacitance, is considerably
less dependent on W, than the space—charge capacitance
of the (0, 0) situation.

In the electrolyte case, it is generally found that no
Faradaic discharge of a particular ion occurs until ¥,
reaches a certain value, the potential step for the actual
charge transfer reaction which takes place. The dis-
charge parameters and boundary conditions for the
various ions present are thus generally very potential
dependent. In the present treatment we have implicitly
taken W,=0 and have thus not needed to consider any
change of the boundary conditions with ¥,, such as
potential dependence of r, and r,. Nevertheless, it seems
likely that the present (0,0) and (0, ©) treatments,
idealized as they are, should apply sufficiently to the
real W0 electrolyte situation that at least the struc-
ture of the present equivalent circuits (and perhaps
much of the frequency dependence of the Rs; and Cs
elements) should be at least somewhat applicable.

Although the present (0,0) and (0, =) analvses are
the most detailed and exact ones worked out thus far,
the time seems ripe for following the same detailed
microscopic approach without some of the present ideal-
izations such as ¥,=0, no indifferent electrolyte, etc.
Although an exact treatment of the ¥y>#0 discharge
case with an excess of indifferent electrolyte present
would require computer solution, its results could prove
most worthwhile. The sinusoidal-response part of such
a calculation should not be attempted, however, until
a static or transient solution is obtained which holds
over a range of ¥, and vields good agreement with
experiment. To achieve such agreement may require
boundary conditions both sensitively dependent on ¥,
and different from those considered here for ¥,=0 and
previously for ¥y0.

VIII. SYMBOL GLOSSARY

C, Geometric capacitance/unit area, e/4wl
Ca Double-layer capacitance/unit area

Cip Capacitative component of the ‘“inter-
face” admittance/unit area, ¥V, C,py=
Cir/(Co—Cy)

Cp Parallel space-charge capacitance/unit area.
Cen=Cp/(Co—Cy) =s7(Cp/Cy)

Cs Series space-charge capacitance/unit area.
Csn=Cs/(Co—C,) =57Cs/C,)

Csco Static space—charge capacitance/unit area

obtained from p;
Co Low-frequency limiting value of Cp, Cg, and
Cip, all plus C,

Cor Static capacitance/unit area calculated
using F;
Cy Capacitance/unit area of the inner, “charge-

free” layer abutting an electrode
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Diffusion coefficients of the negative and
positive charge carriers

Amplitude of the fundamental component
of the electric field

Conductive component of the “interface”
admittance/unit area ¥,

Parallel space—charge conductance/unit area.
Gpy=Gp/G, [blocking case]; Gr/(3Gs)
[discharge case]]

Series space—charge conductance/unit area.
Gsy=Gs/G, [blocking case]; Gs/(3G.)
[discharge case |

Low-frequency limiting value of Gg. Goyv=
(532/As) [blocking]; (4s#/Aq) [discharge]
Bulk conductance/unit area. High-frequency
limiting value of Gp and Gs, o./!
Current/unit area associated with the “inter-
face” region, or admittance/unit area ¥,
upon application of a voltage step. Ix=
TD[;/(CO—CQ) V()

Debye length, [e,T'/8mecy ]2

/2L

Series resistance-unit area associated with
the indifferent electrolyte (Fig. 19)
Frequency-independent series resistance-
unit area associated with Cg for the (0, 0)
or (0, «) cases

Frequency-independent bridging resistance-
unit area associated with continuous dis-
charge in the (0, «) case

Gs'. Ren=Gsy™

Rs—R,, [blocking]; Rs—2R,, [discharge]
Low-frequency limiting value of Rg;
Electrolyte solution resistance-unit area
G()_]; RSi0+Rm [blockmg], Iesig—i—ZR°° [:diS-
charge ]

G,!

Absolute temperature

(2M2Q) 2 Rg;n [ (0, ») case]
(2M2)12(25,0Cs) 1 [ (0, ) case]
Amplitude of applied step voltage
Amplitude of sinusoidal applied voltage.
Vi*=eV,/kT

(2x/1)—1

(neco/1) +iwC, [(0, ©) case]
Z7\. Yw=Y.,/G, [blocking],
[discharge]

Space-charge admittance/unit area, Gp+
ipr. YPNE YP/Gw [blocking]; YP/(%GQO)
[discharge ]

Yo+ Vp [(0, ) case]

Zw~l (@) 3(141) /29

Zs— R, [blocking]; Zs—2R,, [discharge ]
Yp_l. Rs+ (1wCS) -1

Warburg impedance-unit area, n{1—1)/(w)Y/2
Warburg impedance-unit area in blocking
case, (1M2Q)-12R

Yi/(3G)

ZWd1
ZWd2

Co

41

~

la

Vi

4

g:()

r”’ rP

Ay, Ay

Wo

Mrny Mp

P
T

™D
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Warburg impedance-unit area in discharge
case for (10/M)?<Q <0.1, (1M*Q)~12(4R,,)
Warburg impedance-unit area in discharge
case for @1, (iM*Q)~12(2R,,)

Equilibrium homogeneous concentration of
positive and negative charge carriers in the
(0,0) and (0, =) cases

Equilibrium homogeneous concentration of
positive and negative charge carriers of the
indifferent electrolyte

Protonic charge

Boltzmann’s constant

Distance of separation of two plane, parallel
electrodes

Diffusion length, (D,/w)!?

Amplitude of the fundamental component
of the negative charge concentration. n,*==
nl/ coVi*

Laplace transform complex frequency vari-
able. Also used as concentration of positive
charge carriers

Amplitude of fundamental component of the
positive charge concentration. p;*= p;/cV1*
Charge/unit area associated with the “inter-
face” region, or admittance/unit area ¥,
upon application of a voltage step. gwv=
q:/ (Co—Cy) Vy

M ctnh(M)

Blocking or discharge parameters for #; and
p1 at an electrode

(Co—C,)/Cy. se=(r—1) and s, [see Eq.
(5)] are blocking and discharge case ex-
pressions for s

Time

Distance measured from left electrode
Low-frequency limiting value of Gpy/Q? for
blocking and discharge situations
Normalized radial {frequency,
[Lp/laT

Static applied potential
Dielectric constant of the charge-containing
medium

A parameter in the Warburg impedance-
unit area

Mobilities of the negative and positive
charge carriers

Space-charge density, e(p1—m)
High-frequency limiting conductivity,
eco(pntip)

Dielectric relaxation time, C,/Go=C;R =
¢/4mwo

Radial frequency, 2#f, of the applied sinu-
soidal voltage
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